Learn More
We consider the following variant of the speed scaling problem introduced by Yao, Demers, and Shenker. We are given a set of jobs and we have a variable-speed processor to process them. The higher the processor speed, the higher the energy consumption. Each job is associated with its own release time, deadline, and processing volume. The objective is to(More)
Many Web information services utilize techniques of information extraction(IE) to collect important facts from the Web. To create more advanced services, one possible method is to discover thematic information from the collected facts through text classification. However, most conventional text classification techniques rely on manual-labelled corpora and(More)
We introduce the classified stable matching problem, a problem motivated by academic hiring. Suppose that a number of institutes are hiring faculty members from a pool of applicants. Both institutes and applicants have preferences over the other side. An institute classifies the applicants based on their research areas (or any other criterion), and, for(More)
In routing games with infinitesimal players, it follows from well-known convexity arguments that equilibria exist and are unique (up to induced delays, and under weak assumptions on delay functions). In routing games with players that control large amounts of flow, uniqueness has been demonstrated only in limited cases: in 2-terminal, nearly-parallel(More)
We study the quality of equilibrium in atomic splittable routing games. We show that in single-source single-sink games on series-parallel graphs, the price of collusion — the ratio of the total delay of atomic Nash equilibrium to the Wardrop equilibrium — is at most 1. This proves that the existing bounds on the price of anarchy for Wardrop equilibria(More)