Chien-Cheng Li

  • Citations Per Year
Learn More
A truncated Bacillus sp. TS-23 α-amylase gene lacking 96 and 294 bp at its 5′ and 3′ end respectively was prepared by polymerase chain reaction and cloned into Escherichia coli expression vector, pQE-30, under the control of T5 promoter. SDS-PAGE and activity staining analyses showed that the His6-tagged amylase had a molecular mass of approximately 54(More)
Phototaxis is commonly observed in motile photosynthetic microorganisms. For example, green algae are capable of swimming towards a light source (positive phototaxis) to receive more energy for photosynthesis, or away from a light source (negative phototaxis) to avoid radiation damage or to hide from predators. Recently, with the aim of applying nanoscale(More)
By virtue of its amorphous structure with a short-range order feature, the inorganic nanoporous nickel oxyhydroxide (NiOOH) can reversibly and rapidly switch wettability by alternate treatments of environmental chamber (superhydrophobic) and UV/ozone (superhydrophilic). The switchable mechanism of the NiOOH/Ni(OH)2 pair arising from its exceptional(More)
A simple and convenient one-pot synthetic route to directly prepare a self-reductive mesoporous copper-iron-silicate (CuO(x)-Fe-silicate)-based catalyst has been developed. The resultant catalyst is highly active and stable in methanol reforming without needing a pre-reduction procedure.
Enhanced photoelectrochemical (PEC) performances of Ga(2)O(3) and GaN nanowires (NWs) grown in situ from GaN were demonstrated. The PEC conversion efficiencies of Ga(2)O(3) and GaN NWs have been shown to be 0.906% and 1.09% respectively, in contrast to their 0.581% GaN thin film counterpart under similar experimental conditions. A low crystallinity buffer(More)
Ethanol-based nanofluids have attracted much attention due to the enhancement in heat transfer and their potential applications in nanofluid-type fuels and thermal storage. Most research has been conducted on ethanol-based nanofluids containing various nanoparticles in low mass fraction; however, to-date such studies based on high weight fraction of(More)
The unique nanoarchitecture developed in this study and the use of replaceable stainless steel grids as catalyst supports certainly provide a promising platform technique for catalytic generation of high methanol conversion, hydrogen production rate and durability to produce electrical energy.
An on-chip approach for fabricating ferromagnetic/semiconductor-nanotip heterojunctions is demonstrated. The high-density array of Si nanotips (SiNTs) is employed as a template for depositing La(0.7)Sr(0.3)MnO(3) (LSMO) rods with a pulsed-laser deposition method. Compared with the planar LSMO/Si thin film, the heterojunction shows a large enhancement of(More)
  • 1