Learn More
1-Aminobenzotriazole (ABT) is widely used as a non-specific inhibitor of animal cytochrome P450 (CYP). In the present study, the inhibitory effect of ABT was investigated on drug oxidations catalyzed by human CYP isoforms. This inhibitory effect was compared with that of SKF-525A, another non-specific inhibitor, and ketoconazole, a potent inhibitor of(More)
1. Cytochrome P450 (P450, CYP) enzymes involved in drug oxidations in mouse intestines were characterized for their role in the first-pass metabolism of xenobiotics. 2. Preparation of mouse intestinal microsomes using a buffer containing glycerol and protease inhibitors including (p-amidinophenyl) methanesulphonyl fluoride, EDTA, soybean trypsin inhibitor,(More)
It is important to determine the cytochrome P450 (CYP) contribution of certain drugs by taking into consideration the attrition due to issues such as genetic polymorphism and inter-individual variation. In many cases in the early discovery stage, the metabolites of a new chemical have not been identified. Therefore, the present paper devised an approach in(More)
CYP3A4 and CYP3A5 exhibit significant overlap in substrate specificity, but can differ in catalytic activity and regioselectivity. To investigate their characteristics further, the enzymatic reactions of the two CYP3A enzymes were compared using midazolam, nifedipine, testosterone and terfenadine as substrates. Both CYP3A5 and CYP3A4 showed sigmoid and(More)
Cytochrome P450 (P450 or CYP) 3A is one of the most important P450 subfamilies in terms of its broad substrate specificity and relatively high abundance in humans. The substrate specificities of CYP3A4 and CYP3A5 are generally overlapped, but sometimes could differ from each other. It is still important to understand drug interactions more precisely in(More)
1-Aminobenzotriazole (ABT) is extensively used as a non-specific cytochrome P450 (CYP) inhibitor. In this study, the inhibitory effect of ABT on CYP-dependent drug oxidations was investigated in human liver microsomes (HLM) and compared with that of SKF-525A, another non-specific inhibitor. The following probe activities for human CYP isoforms were(More)
The attrition rate in drug development is being reduced by continuous advances in science and technology introduced by various academic institutions and pharmaceutical companies. This has been certainly noticeable in reducing the frequency with which unfavorable absorption, distribution, metabolism, and elimination (ADME) characteristics of any candidate(More)
1. The use of everted sacs of the small intestine as an enzyme source for the study of the first-pass metabolism of xenobiotics by cytochrome P450s (P450, CYP) is described. Several drug oxidation activities for testosterone, chlorzoxazone, tolbutamide, bufuralol and warfarin were observed when everted sacs (1-cm segment) from different parts of mouse small(More)
1. The effects of several CYP3A substrates (alpha-naphthoflavone (alphaNF), terfenadine, midazolam, erythromycin) on nifedipine oxidation and testosterone 6beta-hydroxylation activities were investigated in hepatic and intestinal microsomes from mouse and human. 2. alphaNF (10 microM) and terfenadine (100 microM) inhibited nifedipine oxidation activities(More)
1. To assess the substrate-dependent effects of the low-activity allele of human CYP3A4, CYP3A4*16 (Thr185Ser), a recombinant wild-type (CYP3A4.1) or variant (CYP3A4.16) protein was co-expressed with human NADPH-P450 reductase in Sf21 insect cells using a baculovirus-insect cell system. 2. The holo-CYP3A4 protein level of CYP3A4.16 in insect microsomes was(More)