Chibuike Obioha

Learn More
High resolution (HR) multi-electrode mapping is increasingly being used to evaluate gastrointestinal slow wave behaviors. To create the HR activation time (AT) maps from gastric serosal electrode recordings that quantify slow wave propagation, it is first necessary to identify the AT of each individual slow wave event. Identifying these ATs has been a time(More)
The slow wave activity was measured in the magnetoenterogram (MENG) of normal porcine subjects (N = 5) with segmental intestinal ischemia. The correlation changes in enteric slow wave activity were determined in MENG and serosal electromyograms (EMG). MENG recordings show significant changes in the frequency and power distribution of enteric slow-wave(More)
We report a novel method for identifying the small intestine electrical activity slow-wave frequencies (SWFs) from noninvasive biomagnetic measurements. Superconducting quantum interference device magnetometer measurements are preprocessed to remove baseline drift and high-frequency noise. Subsequently, the underlying source signals are separated using the(More)
We present a novel, fully-automated gastrointestinal spike burst detection algorithm. Following pre-processing with SALPA (Wagenaar and Potter, J. Neurosci. Methods 120:113–120, 2002) and a Savitzky–Golay filter to remove unwanted low and high frequency components, candidate spike waveforms are detected utilizing the non-linear energy operator. Candidate(More)
BACKGROUND Gastroparesis is characterized by delayed gastric emptying without mechanical obstruction, but remains difficult to diagnose and distinguish from other gastrointestinal (GI) disorders. Gastroparesis affects the gastric slow wave, but non-invasive assessment has been limited to the electrogastrogram (EGG), which reliably characterizes temporal(More)
  • 1