Learn More
Neuropeptide S (NPS) is the endogenous ligand of a previously orphan receptor now named NPSR. In the brain NPS regulates several biological functions including anxiety, arousal, locomotion, food intake, learning and memory, pain and drug abuse. Mice lacking the NPSR gene (NPSR(-/-)) represent an useful tool to investigate the neurobiology of the NPS/NPSR(More)
Neuropeptide S (NPS) regulates various biological functions by selectively activating the NPS receptor (NPSR). Recently, the NPSR ligand [(t)Bu-D-Gly(5)]NPS was generated and in vitro characterized as a pure antagonist at the mouse NPSR. In the present study the pharmacological profile of [(t)Bu-D-Gly(5)]NPS has been investigated. [(t)Bu-D-Gly(5)]NPS(More)
Neuropeptide S (NPS) was identified as the endogenous ligand of an orphan receptor now referred to as the NPS receptor (NPSR). In the frame of a structure-activity study performed on NPS Gly5, the NPSR ligand [D-Cys(tBu)(5)]NPS was identified. [D-Cys(tBu)(5)]NPS up to 100 microM did not stimulate calcium mobilization in human embryonic kidney (HEK) 293(More)
Neuropeptide S (NPS) regulates various biological functions by selectively activating the NPS receptor (NPSR). Recently, epidemiological studies revealed an association between NPSR single nucleotide polymorphisms and susceptibility to panic disorders. Here we investigated the effects of NPS in mice subjected to the elevated T maze (ETM), an assay which has(More)
Neuropeptide S (NPS) regulates various biological functions by selectively activating the NPS receptor (NPSR). Previous studies demonstrated that the non-peptide molecule SHA 68 acts as a selective NPSR antagonist. In the present study the pharmacological profile of SHA 68 has been further investigated in vitro and in vivo. In cells expressing the mouse(More)
Nociceptin/orphanin FQ is the natural ligand of a Gi-protein coupled receptor named NOP. This peptidergic system is involved in the regulation of mood states and inflammatory responses. The present study aimed to investigate the consequences of blocking NOP signaling in lipopolysaccharide (LPS)-induced sickness and depressive-like behaviors in mice. LPS(More)
Neuropeptide S (NPS) regulates various biological functions by selectively activating the NPS receptor (NPSR). In particular NPS evokes robust anxiolytic-like effects in rodents together with a stimulant and arousal promoting action. The aim of the study was to investigate the effects of NPS on the aggressiveness of mice subjected to the resident/intruder(More)
The pharmacological activity of the novel neuropeptide S (NPS) receptor (NPSR) ligands QA1 and PI1 was investigated. In vitro QA1 and PI1 were tested in calcium mobilization studies performed in HEK293 cells expressing the recombinant mouse (HEK293mNPSR) and human (HEK293hNPSRIle107 and HEK293hNPSRAsn107) NPSR receptors. In vivo the compounds were studied(More)
Neuropeptide S (NPS) was identified as the endogenous ligand of an orphan receptor now referred to as the NPS receptor (NPSR). In the frame of a structure-activity study performed on NPS Gly5, the NPSR ligand [D-Cys(tBu) 5 ]NPS was identified. [D-Cys(tBu) 5 ]NPS up to 100 ␮M did not stimulate calcium mobilization in human embryonic kidney (HEK) 293 cells(More)
BACKGROUND AND PURPOSE Using an innovative chemical approach, peptide welding technology (PWT), a tetrabranched derivative of nociceptin/orphanin FQ (N/OFQ) has been generated and pharmacologically characterized. Both in vitro and in vivo PWT2-N/OFQ displayed the same pharmacological profile to the natural ligand. It was more potent and produced(More)