Chiara Passarelli

Learn More
In this study we investigated the molecular mechanism of glutathionylation on isolated human cardiac myofibrils using several pro-glutathionylating agents. Total glutathionylated proteins appeared significantly enhanced with all the pro-oxidants used. The increase was completely reversed by the addition of a reducing agent, demonstrating that glutathione(More)
Most mutations that truncate the reading frame of the DMD gene cause loss of dystrophin expression and lead to Duchenne muscular dystrophy. However, amelioration of disease severity has been shown to result from alternative translation initiation beginning in DMD exon 6 that leads to expression of a highly functional N-truncated dystrophin. Here we(More)
A balanced redox status is necessary to optimize force production in contractile apparatus, where free radicals generated by skeletal muscle are involved in some basic physiological processes like excitation-contraction coupling. Protein glutathionylation has a key role in redox regulation of proteins and signal transduction. Here we show that myosin is(More)
Friedreich's ataxia (FRDA) is an autosomal recessive disorder caused by mutations in the gene encoding frataxin, a mitochondrial protein implicated in iron metabolism. Current evidence suggests that loss of frataxin causes iron overload in tissues, and increase in free-radical production leading to oxidation and inactivation of mitochondrial respiratory(More)
Duchenne muscular dystrophy (DMD) is an X-linked inherited neuromuscular disorder due to mutations in the dystrophin gene. It is characterized by progressive muscle weakness and wasting due to the absence of dystrophin protein that causes degeneration of skeletal and cardiac muscle. The molecular diagnostic of DMD involves a deletions/duplications analysis(More)
The mitochondrial respiratory chain represents the major source of reactive oxygen species (ROS) in cells and its dysfunction may contribute to the pathogenesis of several diseases. In mitochondria, glutathione is the major redox buffer and is a good indicator for the redox environment of the cell. Indeed, overproduction of ROS decreases the ratio between(More)
OBJECTIVE Congenital disorders of glycosylation (CDG) are a group of metabolic diseases due to defects in protein and lipid glycosylation. We searched for the primary defect in 3 children from 2 families with a severe neurological phenotype, including profound developmental delay, intractable epilepsy, progressive microcephaly, severe hypotonia with(More)
OBJECTIVE Duchenne muscular dystrophy (DMD) is characterised by progressive muscle weakness. It has recently been reported that single nucleotide polymorphisms (SNPs) located in the SPP1 and LTBP4 loci can account for some of the inter-individual variability observed in the clinical disease course. The validation of genetic association in large independent(More)
Oxidative stress influences a variety of regulatory proteins, including nuclear factor-kappaB (NF-kappaB). NF-kappaB is critical for maintaining the proliferation/apoptosis balance in hepatocytes. In this study we investigated the causal links between glutathione, NF-kappaB and hepatocyte damage. HepG2 and 3B cells were exposed to different doses of H2O2 or(More)
The objective of the present study was to evaluate the expression of a cyclic alternating pattern (CAP) in slow wave sleep (SWS) in children with the well-defined chronic syndrome juvenile idiopathic arthritis (JIA). Twelve patients (9-17 years of age), 7 girls, with JIA were compared to matched controls by age, pubertal stage and gender. After one night of(More)