Chiara Massa

Learn More
The immunologic approach to tumour therapy is hampered by the development of direct immune escape mechanisms and the induction of an immunosuppressive tumour microenvironment characterised by the expansion of myeloid-derived suppressor cells (MDSCs) and tumour-specific regulatory T cells (Tregs). The implementation of inhibitors targeting protein tyrosine(More)
The clinical usage of dendritic cells (DC) for tumor immunotherapy still requires improvements. In this study, three alternative maturation mixtures were compared with the cytokine-based gold standard, and the overall interaction of the resulting DC with effector cells from the innate as well as the adaptive immunity was evaluated in healthy donors.(More)
Dendritic cells (DC) play a central role in the regulation of the immune responses by providing the information needed to decide between tolerance, ignorance, or active responses. For this reason different therapies aim at manipulating DC to obtain the desired response, such as enhanced cell-mediated toxicity against tumor and infected cells or the(More)
Tumor immunotherapy has exploited the ability of heat shock proteins to chaperone precursors of antigenic peptides to antigen-presenting cells and to activate efficiently an immune response against tumor-associated antigens. The most common strategy is based on the purification of heat shock protein-peptide complexes from tumor cell lines or from tumor(More)
The presentation of tumor antigen-derived peptides by human leukocyte antigen (HLA) class I surface antigens on tumor cells is a key prerequisite to trigger effective T-cell responses in cancer patients. Multiple complementary strategies like cDNA and serological expression cloning, reverse immunology and different 'ome'-based methods have been employed to(More)
UNLABELLED Oncogenic transformation is often associated with an increased expression of the cAMP response element binding (CREB) transcription factor controlling the expression of genes involved in cell proliferation, cell cycle, apoptosis, and tumor development, but a link between K-RAS(V12)-induced transformation and CREB has not yet been determined.(More)
Secreted proteins could modulate the interaction between tumor, stroma and immune cells within the tumor microenvironment thereby mounting an immunosuppressive tumor microenvironment. In order to determine the secretome-mediated, von Hippel Lindau (VHL)-regulated cross-talk between tumor cells and T lymphocytes peripheral blood mononuclear cells (PBMC) from(More)
In May 2008 the fourth conference of “Tumor immunology meets oncology” was held at the University Hospital of the Martin Luther University Halle-Wittenberg in Halle organized by the Institute of Medical Immunology (director Barbara Seliger) together with Hans-Joachim Schmoll the director of the Department of Internal Medicine IV. The program of this(More)
The immune system is endowed with the capability to recognize and destroy transformed cells, but even in the presence of an immune infiltrate many tumors do progress. In the last decades new discoveries have shed light into (some of) the underlying mechanisms. Immune effector cells are not only under the influence of immune suppressive cell subsets, but(More)
Tumor immunotherapy has exploited the ability of heat shock proteins to chaperone precursors of antigenic peptides to antigen-presenting cells and to activate efficiently an immune response against tumor-associated antigens. The most common strategy is based on the purification of heat shock protein-peptide complexes from tumor cell lines or from tumor(More)