Learn More
HisTOOLogy is an open-source software for the quantification of digital colour images of histological sections. The simple graphical user interface enables both expert and non-expert users to rapidly extract useful information from stained tissue sections. The software's main feature is a generalizable colour separation algorithm based on k-means clustering(More)
This study is aimed at characterizing soft tissue slices using a vibratome. In particular, the effect of two sectioning parameters (i.e., step size and sectioning speed) on resultant slice thickness was investigated for fresh porcine liver as well as for paraformaldehyde-fixed (PFA-fixed) and fresh murine brain. A simple framework for embedding, sectioning(More)
Morphometric analysis of neurons and brain tissue is relevant to the study of neuron circuitry development during the first phases of brain growth or for probing the link between microstructural morphology and degenerative diseases. As neural imaging techniques become ever more sophisticated, so does the amount and complexity of data generated. The(More)
Although the detailed structure and function of the claustrum remain enigmatic, its extensive reciprocal connection with the cortex suggests a role in the integration of multisensory information. Claustrum samples, obtained from necropsy of four dogs, were formalin fixed for paraffin embedding. Sections were either stained for morpho-histological analysis(More)
Tissue clarification has been recently proposed to allow deep tissue imaging without light scattering. The clarification parameters are somewhat arbitrary and dependent on tissue type, source and dimension: every laboratory has its own protocol, but a quantitative approach to determine the optimum clearing time is still lacking. Since the use of transgenic(More)
Decellularised human livers are considered the perfect ECM (extracellular matrix) surrogate because both 3-dimensional architecture and biological features of the hepatic microenvironment are thought to be preserved. However, donor human livers are in chronically short supply, both for transplantation or as decellularised scaffolds, and will become even(More)
The Reeler heterozygous mice (reln(+/-)) are haplodeficient in the gene (reln) encoding for the reelin glycoprotein (RELN) and display reductions in brain/peripheral RELN similar to autistic or schizophrenic patients. Cytoarchitectonic alterations of the reln(+/-) brain may be subtle, and are difficult to demonstrate by current histological approaches. We(More)
  • 1