Chiara Fedrighi

  • Citations Per Year
Learn More
BACKGROUND Manganese (Mn) is an essential element that can become neurotoxic through various exposure windows over the lifespan. While there is clear evidence of Mn neurotoxicity in pediatric and adult occupational populations, little is known about effects in the elderly who may exhibit enhanced susceptibilities due to compromised physiology compared to(More)
Long-term exposure to environmental manganese (Mn) affects not only attention and neuromotor functions but also olfactory functions of a pre-adolescent local population who have spent their whole life span in contaminated areas. In order to investigate the effect of such exposure at the level of the central nervous system we set up a pilot fMRI experiment(More)
Manganese (Mn) is an essential metal that plays a fundamental role for brain development and functioning. Environmental exposure to Mn may lead to accumulation in the basal ganglia and development of Parkinson-like disorders. The most recent research is focusing on early-life overexposure to Mn and the potential vulnerability of younger individuals to Mn(More)
BACKGROUND Manganese (Mn) is an essential element required for growth and development, but higher body burdens have been associated with neurobehavioral decrements in children. OBJECTIVES We examined whether prenatal or postnatal Mn measured in deciduous teeth was associated with scores on a test of visuospatial learning and memory. METHODS Deciduous(More)
BACKGROUND Release of ambient metals during ferroalloy production may be an important source of environmental exposure for nearby communities and exposure to these metals has been linked to adverse respiratory outcomes. We sought to characterize the association between personal air levels of metals and respiratory health in Italian adolescents living in(More)
INTRODUCTION While studies have suggested that exposure to manganese (Mn) may be associated with neurodevelopment in school-age children, there is limited information on prenatal and postnatal Mn exposures and tremor or motor function in children. METHODS We measured Mn levels in dentine of shed teeth, representing prenatal, early postnatal, and(More)
  • 1