Chia-Tien Chang

Learn More
Ethylene behaves as a hormone in plants, regulating such aspects of growth and development as fruit ripening, flower senescence, and abscission. Ethylene insensitivity is conferred by dominant mutations in the ETR1 gene early in the ethylene signal transduction pathway of Arabidopsis thaliana. The ETR1 gene was cloned by the method of chromosome walking.(More)
We have constructed a restriction fragment length polymorphism linkage map for the nuclear genome of the flowering plant Arabidopsis thaliana. The map, containing 90 randomly distributed molecular markers, is physically very dense; greater than 50% of the genome is within 1.9 centimorgans, or approximately 270 kilobase pairs, of the mapped DNA fragments.(More)
The plant hormone ethylene regulates a variety of processes of growth and development. To identify components in the ethylene signal transduction pathway, we screened for ethylene-insensitive mutants in Arabidopsis thaliana and isolated a dominant etr2-1 mutant. The etr2-1 mutation confers ethylene insensitivity in several processes, including etiolated(More)
In Arabidopsis thaliana, signal transduction of the hormone ethylene involves at least two receptors, ETR1 and ERS, both of which are members of the two-component histidine protein kinase family that is prevalent in prokaryotes. The pathway also contains a negative regulator of ethylene responses, CTR1, which closely resembles members of the Raf protein(More)
Ethylene (C2H4) is a gaseous hormone that affects many aspects of plant growth and development. Ethylene perception requires specific receptors and a signal transduction pathway to coordinate downstream responses. The etr1-1 gene of Arabidopsis encodes a mutated receptor that confers dominant ethylene insensitivity. Evidence is presented here that etr1-1(More)
ERS (ethylene response sensor), a gene in the Arabidopsis thaliana ethylene hormone-response pathway, was uncovered by cross-hybridization with the Arabidopsis ETR1 gene. The deduced ERS protein has sequence similarity with the amino-terminal domain and putative histidine protein kinase domain of ETR1, but it does not have a receiver domain as found in(More)
The human proto-oncogene PBX1 codes for a homolog of Drosophila extradenticle, a divergent homeo domain protein that modulates the developmental and DNA-binding specificity of select HOM proteins. We demonstrate that wild-type Pbx proteins and chimeric E2a-Pbx1 oncoproteins cooperatively bind a consensus DNA probe with HoxB4, B6, and B7 of the Antennapedia(More)
The Smad proteins have been implicated in the intracellular signaling of transforming growth factor-beta (TGF-beta) ligands. Here we describe the function of Smad5 in early Xenopus development. Misexpression of Smad5 in the embryo causes ventralization and induces ventral mesoderm. Moreover, Smad5 induces epidermis in dissociated ectoderm cells which would(More)
Tyrosine kinase inhibitors (TKIs) elicit high response rates among individuals with kinase-driven malignancies, including chronic myeloid leukemia (CML) and epidermal growth factor receptor-mutated non-small-cell lung cancer (EGFR NSCLC). However, the extent and duration of these responses are heterogeneous, suggesting the existence of genetic modifiers(More)
Smad proteins are key intracellular signaling effectors for the transforming growth factor-beta superfamily of peptide growth factors. Following receptor-induced activation, Smads move into the nucleus to activate transcription of a select set of target genes. The activity of Smad proteins must be tightly regulated to exert the biological effects of(More)