Chia-Han Chiang

Learn More
Perception and cortical responses are not only driven "bottom-up" by the external stimulus but are altered by internal constraints such as expectancy or the current behavioral goal. To investigate neurophysiological mechanisms of such top-down effects, we analyzed the temporal interactions of neurons on different levels of the cortical hierarchy during(More)
The study of the cooperativity among cortical areas is essential to our understanding of brain functioning. Here we investigated the relative contributions of top-down and bottom-up directed interactions between area 17 and area 7 of the cat visual system. Bipolar local field potentials were recorded while the animals performed a go/no-go task or were in a(More)
Materials that can serve as long-lived barriers to biofluids are essential to the development of any type of chronic electronic implant. Devices such as cardiac pacemakers and cochlear implants use bulk metal or ceramic packages as hermetic enclosures for the electronics. Emerging classes of flexible, biointegrated electronic systems demand similar levels(More)
OBJECTIVE Micro-electrocorticography (μECoG) offers a minimally invasive neural interface with high spatial resolution over large areas of cortex. However, electrode arrays with many contacts that are individually wired to external recording systems are cumbersome and make recordings in freely behaving rodents challenging. We report a novel high-density(More)
Micro-electrocorticographic (μECοG) electrode arrays provide a minimally invasive, high-resolution neural interface with broad cortical coverage. Previously, we fabricated μECoG arrays at a lower cost than commercially available devices using low-cost industrial processes [1], [2]. Here, we report the in vitro electrical performance of five μECoG designs(More)
Advanced capabilities in electrical recording are essential for the treatment of heart-rhythm diseases. The most advanced technologies use flexible integrated electronics; however, the penetration of biological fluids into the underlying electronics and any ensuing electrochemical reactions pose significant safety risks. Here, we show that an ultrathin,(More)
  • 1