Chi-Te Liang

Learn More
Due to its high carrier mobility, broadband absorption, and fast response time, the semi-metallic graphene is attractive for optoelectronics. Another two-dimensional semiconducting material molybdenum disulfide (MoS2) is also known as light- sensitive. Here we show that a large-area and continuous MoS2 monolayer is achievable using a CVD method and graphene(More)
Atomically thin molybdenum disulfide (MoS(2)) layers have attracted great interest due to their direct-gap property and potential applications in optoelectronics and energy harvesting. Meanwhile, they are extremely bendable, promising for applications in flexible electronics. However, the synthetic approach to obtain large-area MoS(2) atomic thin layers is(More)
A unique "clean-lifting transfer" (CLT) technique that applies a controllable electrostatic force to transfer large-area and high-quality CVD-grown graphene onto various rigid or flexible substrates is reported. The CLT technique without using any organic support or adhesives can produce residual-free graphene films with large-area processability, and has(More)
A new and general approach to achieving efficient electrically driven light emission from a Si-based nano p-n junction array is introduced. A wafer-scale array of p-type silicon nanotips were formed by a single-step self-masked dry etching process, which is compatible with current semiconductor technologies. On top of the silicon nanotip array, a layer of(More)
Apoptosis (programmed cell death) is linked to many incurable neurodegenerative, cardiovascular and cancer causing diseases. Numerous methods have been developed for imaging apoptotic cells in vitro; however, there are few methods available for imaging apoptotic cells in live animals (in vivo). Here we report a novel method utilizing the unique(More)
A simple hydrothermal method of preparing highly photocatalytic graphene-ZnO-Au nanocomposites (G-ZnO-Au NCs) has been developed. Zinc acetate and graphene oxide are reduced by catechin to form graphene-zinc oxide nanospheres (G-ZnO NSs; average diameter of (45.3 ± 3.7) nm) in the presence of ethylenediamine (EDA) as a stabilizing agent and gold nanorods(More)
The transport characteristics of graphene devices with low n- or p-type carrier density (∼10(10) -10(11) cm(-2) ), fabricated using a new process that results in minimal organic surface residues, are reported. The p-type molecular doping responsible for the low carrier densities is initiated by aqua regia. The resulting devices exhibit highly developed ν =(More)
A significant advance toward achieving practical applications of graphene as a two-dimensional material in nanoelectronics would be provided by successful synthesis of both n-type and p-type doped graphene. However, reliable doping and a thorough understanding of carrier transport in the presence of charged impurities governed by ionized donors or acceptors(More)
A direct insulator-quantum Hall (I-QH) transition corresponds to a crossover/transition from the insulating regime to a high Landau level filling factor ν > 2 QH state. Such a transition has been attracting a great deal of both experimental and theoretical interests. In this study, we present three different two-dimensional electron systems (2DESs) which(More)
We report on magneto-transport measurements on low-density, large-area monolayer epitaxial graphene devices grown on SiC. We observe temperature (T)-independent crossing points in the longitudinal resistivity ρxx, which are signatures of the insulator-quantum Hall (I-QH) transition, in all three devices. Upon converting the raw data into longitudinal and(More)