Chi Nhan Duong

Learn More
The “interpretation through synthesis”, i.e. Active Appearance Models (AAMs) method, has received considerable attention over the past decades. It aims at “explaining” face images by synthesizing them via a parameterized model of appearance. It is quite challenging due to appearance variations of human face images, e.g. facial(More)
—The " interpretation through synthesis " approach to analyze face images, particularly Active Appearance Models (AAMs) method, has become one of the most successful face modeling approaches over the last two decades. AAM models have ability to represent face images through synthesis using a controllable parameterized Principal Component Analysis (PCA)(More)
Modeling the face aging process is a challenging task due to large and non-linear variations present in different stages of face development. This paper presents a deep model approach for face age progression that can efficiently capture the non-linear aging process and automatically synthesize a series of age-progressed faces in various age ranges. In this(More)
Designed as extremely deep architectures, deep residual networks which provide a rich visual representation and offer robust convergence behaviors have recently achieved exceptional performance in numerous computer vision problems. Being directly applied to a scene labeling problem, however, they were limited to capture long-range contextual dependence,(More)
Modeling the long-term facial aging process is extremely challenging due to the presence of large and non-linear variations during the face development stages. In order to efficiently address the problem, this work first decomposes the aging process into multiple short-term stages. Then, a novel generative probabilistic model, named Temporal Non-Volume(More)