Learn More
Extracellular deposition of amyloid-beta (Aβ) protein, a fragment of membrane glycoprotein called β-amyloid precursor transmembrane protein (βAPP), is the major characteristic for the Alzheimer's disease (AD). However, the structural and mechanistic information of forming Aβ protein aggregates in a lag phase in cell exterior has been still limited. Here, we(More)
Molecular dynamics (MD) simulations and quantum mechanical electronic structure calculations are used to investigate the nature and dynamics of the phenol-benzene complex in the mixed solvent, benzene/CCl4. Under thermal equilibrium conditions, the complexes are continuously dissociating and forming. The MD simulations are used to calculate the experimental(More)
Protein engineering method to study the mutation effects on muscle acylphosphatase (AcP) has been actively applied to describe kinetics and thermodynamics associated with AcP aggregation as well as folding processes. Despite the extensive mutation experiments, the molecular origin and the structural motifs for aggregation and folding kinetics as well as(More)
Synthesis of a novel pyrene derivative sensor (1) and its intermolecular binding pattern to Cu(2+) in CH(3)CN were investigated. Upon Cu(2+) binding, the sensor exhibited a strong static excimer emission at 460 nm, along with a weak monomer emission at 388 nm. The excimer emission intensity induced by the Cu(2+) ion declined as the spacer length between the(More)
Hydration effects on the C[Triple Bond]N stretching mode frequencies of MeCN and MeSCN are investigated by carrying out ab initio calculations for a number of MeCN-water and MeSCN-water complexes with varying number of water molecules. It is found that the CN frequency shift induced by the hydrogen-bonding interactions with water molecules originate from(More)
The antiparallel and parallel beta sheets are two of the most abundant secondary structures found in proteins. Although various spectroscopic methods have been used to distinguish these two different structures, the linear spectroscopic measurements could not provide incisive information for distinguishing an antiparallel beta sheet from a parallel beta(More)
The molecular origin of the energy produced by the ATP hydrolysis has been one of the long-standing fundamental issues. A classical view is that the negative hydrolysis free energy of ATP originates from intramolecular effects connected with the backbone P-O bond, so called "high-energy bond". On the other hand, it has also been recognized that solvation(More)
Carrying out density functional theory calculations of four DNA bases, base derivatives, Watson-Crick (WC) base pairs, and multiple-layer base pair stacks, we studied vibrational dynamics of delocalized modes with frequency ranging from 1400 to 1800 cm(-1). These modes have been found to be highly sensitive to structure fluctuation and base pair(More)
In Paper I, we studied vibrational properties of normal bases, base derivatives, Watson-Crick base pairs, and multiple layer base pair stacks in the frequency range of 1400-1800 cm(-1). However, typical IR absorption spectra of single- and double-stranded DNA have been measured in D(2)O solution. Consequently, the more relevant bases and base pairs are(More)
Linear and nonlinear IR spectroscopic studies of nucleic acids can provide crucial information on solution conformations of DNA double helix and its complex with other molecules. Carrying out density functional theory calculations of A-, B-, and Z-form DNA's, the authors obtained vibrational spectroscopic properties as well as coupling constants between(More)