Learn More
Accumulation of zinc (Zn) in dopaminergic neurons is implicated in Parkinson’s disease (PD), and microglial activation plays a critical role in toxin-induced Parkinsonism. Oxidative stress is accused in Zn-induced dopaminergic neurodegeneration; however, its connection with microglial activation is still not known. This study was undertaken to elucidate the(More)
Long-term exposure to cypermethrin induces the nigrostriatal dopaminergic neurodegeneration in adult rats and its pre-exposure in the critical periods of brain development enhances the susceptibility during adulthood. Monoamine transporters, xenobiotic metabolizing enzymes and oxidative stress play critical roles in the nigrostriatal dopaminergic(More)
Oxidative stress is implicated in Parkinson's disease (PD). Metallothioneins (MT), cytochrome P450 IIE1 (CYP2E1) and glutathione S-transferases alpha4-4 (GSTA4-4) are involved in oxidative stress-mediated damage. Altered dopamine transporter (DAT) and vesicular monoamine transporter-2 (VMAT-2) are also documented in PD. The present study was undertaken to(More)
Oxidative stress plays a crucial role in the manifestations of maneb (MB) and paraquat (PQ)-induced toxicity including MB+PQ-induced Parkinson's disease (PD). Polymorphonuclear leukocytes (PMNs) actively participate in the oxidative stress-mediated inflammation and organ toxicity. The present study was undertaken to investigate the MB- and/or PQ-induced(More)
Oxidative stress is one of the major players in the pathogenesis of maneb (MB) and paraquat (PQ)-induced disorders. N-acetyl cysteine (NAC), a glutathione (GSH) precursor and silymarin (SIL), a naturally occurring antioxidant, encounter oxidative stress-mediated cellular damage. The present study was aimed to investigate the effects of NAC and SIL against(More)
Experimental studies have shown that toxicant responsive genes, cytochrome P450s (CYPs) and glutathione S-transferases (GSTs) play a critical role in pesticide-induced toxicity. CYPs play pro-oxidant role and GSTs offer protection in maneb (MB) and paraquat (PQ)-induced brain and lung toxicities. The present study aimed to investigate the effect of repeated(More)
The study was undertaken to investigate the effect of zinc (Zn) on glutathione S-transferase (GST) and superoxide dismutases (SOD) activities and on the expressions of cytosolic Cu, Zn-SOD (SOD1), mitochondrial Mn-SOD (SOD2), γ-glutamyl cysteine synthetase (γ-GCS) and heme oxygenase-1 (HO-1) in the nigrostriatal tissue of rats. Additionally, Zn-induced(More)
An association between excessive zinc (Zn) accumulation in brain and incidences of Parkinson's disease (PD) has been shown in several epidemiological and experimental investigations. The involvement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and glutathione (GSH) in the pathogenesis of PD has also been proposed in a few studies. Despite(More)
Clinical evidences showing zinc (Zn) accumulation in the post-mortem brain of Parkinson’s disease (PD) patients and experimental studies on rodents chronically exposed to Zn suggested its role in PD. While oxidative stress is implicated in Zn-induced neurodegeneration, roles of inflammation and apoptosis in degeneration of the nigrostriatal dopaminergic(More)
Parkinson’s disease (PD) is the second most unconcealed neurodegenerative disorder labelled with motor impairments. Two pesticides, manganese ethylene-1,2-bisdithiocarbamate (maneb) and 1,1′-dimethyl-4,4′-bipyridinium dichloride (paraquat), together, are reported to increase the incidence of PD in humans and Parkinsonism in mice. Conversely, silymarin and(More)