Chester Conrad

Learn More
The failing heart is characterized by impaired cardiac muscle function and increased interstitial fibrosis. Our purpose was to determine whether the functional impairment of the failing heart is associated with changes in levels of mRNA encoding proteins that modulate parameters of contraction and relaxation and whether the increased fibrosis observed in(More)
To investigate the mechanism of impaired myocardial function after long-term pressure overload, we studied cardiac muscle mechanical contraction and intracellular calcium transients using the bioluminescent indicator aequorin. Left ventricular papillary muscle preparations were examined from three groups of rats: 1) aging spontaneously hypertensive rats(More)
Studies of hemodynamics and intrinsic left ventricular myocardial function are carried out to investigate the transition from stable hypertrophy to cardiac decompensation in the aging (18-24 months) spontaneously hypertensive rat (SHR). Echocardiographic data in awake animals demonstrate increased end-diastolic and end-systolic volumes and depressed(More)
BACKGROUND Fibrosis is commonly found in association with cardiac hypertrophy and failure, but the relation of the connective tissue response to the development of impaired cardiac function remains unclear. We examined passive myocardial stiffness, active contractile function, and fibrosis in the spontaneously hypertensive rat (SHR), a model of chronic(More)
Gene expression, determined by micro-array analysis, and left ventricular (LV) remodeling associated with the transition to systolic heart failure (HF) were examined in the spontaneously hypertensive rat (SHR). By combining transcript and gene set enrichment analysis (GSEA) of the LV with assessment of function and structure in age-matched SHR with and(More)
BACKGROUND After a period of stable hypertrophy, male spontaneously hypertensive rats (SHR) develop heart failure between 18 to 24 months of age, with depression of active myocardial function and increased passive stiffness. We tested the hypothesis that chronic ACE inhibition by captopril would prevent and possibly reverse impairment of myocardial(More)
To identify genes that are differentially expressed during the transition from compensated hypertrophy to failure, myocardial mRNA from spontaneously hypertensive rats (SHR) with heart failure (SHR-F) was compared with that from age-matched SHR with compensated hypertrophy (SHR-NF) and normotensive Wistar-Kyoto rats (WKY) by differential display reverse(More)
Genetically altered mice have become an increasingly important tool for the study of mechanisms of cardiac function, and therefore it is vital to characterize the basic contractile properties of the mouse heart. As a first approach to this goal, we first optimized perfusion conditions and characterized the effect of incremental left ventricular balloon(More)
BACKGROUND Enthusiasm for the development of Ca2+ sensitizers as inotropic agents for heart failure has been tempered by reports of impaired relaxation. Levosimendan, which increases myofilament Ca2+ sensitivity via Ca2+-dependent binding to troponin C, exerts positive inotropic and lusitropic effects in failing human myocardium in vitro. We sought to(More)
We have observed that many spontaneously hypertensive rats (SHR) between the ages of 18 and 24 mo develop findings suggestive of heart failure, including pleural and pericardial effusions, left atrial thrombi, and right ventricular hypertrophy. Isolated left ventricular papillary muscle function was studied in these animals (SHR-F), in age-matched SHRs(More)