Learn More
To investigate the mechanism of impaired myocardial function after long-term pressure overload, we studied cardiac muscle mechanical contraction and intracellular calcium transients using the bioluminescent indicator aequorin. Left ventricular papillary muscle preparations were examined from three groups of rats: 1) aging spontaneously hypertensive rats(More)
The failing heart is characterized by impaired cardiac muscle function and increased interstitial fibrosis. Our purpose was to determine whether the functional impairment of the failing heart is associated with changes in levels of mRNA encoding proteins that modulate parameters of contraction and relaxation and whether the increased fibrosis observed in(More)
To identify genes that are differentially expressed during the transition from compensated hypertrophy to failure, myocardial mRNA from spontaneously hypertensive rats (SHR) with heart failure (SHR-F) was compared with that from age-matched SHR with compensated hypertrophy (SHR-NF) and normotensive Wistar-Kyoto rats (WKY) by differential display reverse(More)
Background Clinical trials are widely considered the gold standard in comparative effectiveness research (CER) but the high cost and complexity of traditional trials and concerns about generalizability to broad patient populations and general clinical practice limit their appeal. Unsuccessful implementation of CER results limits the value of even the(More)
Left ventricular isovolumic stress development and metabolic parameters were studied in 18-24-month-old spontaneously hypertensive rats (SHRs) and age-matched Wistar-Kyoto (WKY) rat controls using the isolated, isovolumic (balloon in left ventricle) buffer-perfused rat heart preparation. After WKY rats and all SHRs were compared, SHRs were divided into two(More)
Inotropic responsiveness to beta-adrenergic stimulation is generally found to be impaired in left ventricular (LV) hypertrophy and failure. To investigate the mechanisms by which angiotensin-converting enzyme inhibitor therapy may modulate inotropic responsiveness with long-term pressure overload, we studied the effects of captopril treatment on cardiac(More)
BACKGROUND Enthusiasm for the development of Ca2+ sensitizers as inotropic agents for heart failure has been tempered by reports of impaired relaxation. Levosimendan, which increases myofilament Ca2+ sensitivity via Ca2+-dependent binding to troponin C, exerts positive inotropic and lusitropic effects in failing human myocardium in vitro. We sought to(More)
OBJECTIVES The Massachusetts Veterans Epidemiology Research and Information Center in collaboration with the Stanford Center for Innovative Study Design set out to test the feasibility of a new method of evidence generation. The first pilot of a point-of-care clinical trial (POCCT), adding randomization and other study processes to an electronic medical(More)
To investigate the mechanism of impaired myocardial function after long-term pressure overload, we studied cardiac muscle mechanical contraction and intracellular calcium tran-sients using the bioluminescent indicator aequorin. Left ventricular papillary muscle preparations were examined from three groups of rats: 1) aging spontaneously hypertensive rats
  • 1