Cheryl McFarlane

Learn More
Ubiquitination is a reversible posttranslational modification that is essential for cell cycle control, and it is becoming increasingly clear that the removal of ubiquitin from proteins by deubiquitinating enzymes (DUB) is equally important. In this study, we have identified high levels of the DUB USP17 in several tumor-derived cell lines and primary lung,(More)
Deubiquitinating enzymes are now emerging as potential therapeutic targets that control many cellular processes, but few have been demonstrated to control cell motility. Here, we show that ubiquitin-specific protease 17 (USP17) is rapidly and transiently induced in response to chemokines SDF-1/CXCL12 and IL-8/CXCL8 in both primary cells and cell lines, and(More)
Metastasis is the predominant cause of death from cancer yet we have few biomarkers to predict patients at increased risk of metastasis and are unable to effectively treat disseminated disease. Analysis of 448 primary breast tumors determined that expression of the hylauronan receptor CD44 associated with high grade (p = 0.046), ER- (p = 0.001) and(More)
PURPOSE The traditional approach for identifying subjects at risk from cardiovascular diseases (CVD) is to determine the extent of clustering of biological risk factors adjusted for lifestyle. Recently, markers of endothelial dysfunction and low grade inflammation, including high sensitivity C-reactive protein (hsCRP), soluble intercellular adhesion(More)
USP17 is a cell cycle regulated deubiquitinating enzyme that is highly expressed in tumor-derived cell lines and has an established role in cell proliferation and chemotaxis. This is the first study to examine the clinical significance of USP17 expression in non-small cell lung cancer (NSCLC). USP17 was overexpressed in both squamous and adenocarcinoma(More)
Suppressors of cytokine signalling (SOCS) proteins regulate signal transduction, but their role in responses to chemokines remains poorly understood. We report that cells expressing SOCS1 and 3 exhibit enhanced adhesion and reduced migration towards the chemokine CCL11. Focal adhesion kinase (FAK) and the GTPase RhoA, control cell adhesion and migration and(More)
Somatic mutations in TP53 are seen in many human cancers. In addition, the protein product of the wild-type TP53 can be sequestered by the protein MDM2 (murine double minute 2). This protein is commonly overexpressed in human sarcomas and gliomas, usually as a result of gene amplification. In this study, 43 ovarian carcinomas (OCs) were analysed for(More)
BRCA1 mediates resistance to apoptosis in response to DNA-damaging agents, causing BRCA1 wild-type tumours to be significantly more resistant to DNA damage than their mutant counterparts. In this study, we demonstrate that following treatment with the DNA-damaging agents, etoposide or camptothecin, BRCA1 is required for the activation of nuclear factor-κB(More)
BACKGROUND/OBJECTIVES Myostatin (Mstn) has a pivotal role in glucose and lipid metabolism. Mstn deficiency leads to the increased browning of white adipose tissue (WAT), which results in the increased energy expenditure and protection against diet-induced obesity and insulin resistance. In this study, we investigated the molecular mechanism(s) through which(More)
CD44 expression is elevated in basal-like breast cancer (BLBC) tissue, and correlates with increased efficiency of distant metastasis in patients and experimental models. We sought to characterize mechanisms underpinning CD44-promoted adhesion of BLBC cells to vascular endothelial monolayers and extracellular matrix (ECM) substrates. Stimulation with(More)