Cheryl Mae Craft

Learn More
Nuclear movement relative to cell bodies is a fundamental process during certain aspects of mammalian retinal development. During the generation of photoreceptor cells in the cell division cycle, the nuclei of progenitors oscillate between the apical and basal surfaces of the neuroblastic layer (NBL). This process is termed interkinetic nuclear migration(More)
The retinoblastoma protein (Rb) regulates proliferation, cell fate specification and differentiation in the developing central nervous system (CNS), but the role of Rb in the developing mouse retina has not been studied, because Rb-deficient embryos die before the retinas are fully formed. We combined several genetic approaches to explore the role of Rb in(More)
Desensitization plays an important role in the rapid termination of G-protein signaling pathways. This process, which involves phosphorylation by a G-protein-coupled receptor kinase (GRK) followed by arrestin binding, has been studied extensively in the rod photoreceptor cell of the mammalian retina. In contrast, less is known regarding desensitization in(More)
We report here real-time imaging of calcium bursts in human lymphocytes exposed to nanosecond, megavolt-per-meter pulsed electric fields. Ultra-short (less than 30 ns), high-field (greater than 1 MV/m), electric pulses induce increases in cytosolic calcium concentration and translocation of phosphatidylserine (PS) to the outer layer of the plasma membrane(More)
Nanosecond, megavolt-per-meter, pulsed electric fields induce phosphatidylserine (PS) externalization, intracellular calcium redistribution, and apoptosis in Jurkat T-lymphoblasts, without causing immediately apparent physical damage to the cells. Intracellular calcium mobilization occurs within milliseconds of pulse exposure, and membrane phospholipid(More)
Irish setter dogs affected with a rod/cone dysplasia (locus designation, rcd1) display markedly elevated levels of retinal cGMP during postnatal development. The photoreceptor degeneration commences approximately 25 days after birth and culminates at about 1 year when the population of rods and cones is depleted. A histone-sensitive retinal cGMP(More)
Phosducin (Phd) and Phd-like proteins (PhLPs) selectively bind guanine nucleotide protein (G protein) betagamma subunits (Gbetagamma), while Phd-like orphan proteins (PhLOPs) lack the major functional domain for the binding of Gbetagamma. A retina- and pineal gland-specific transcription factor, cone-rod homeobox (CRX), was identified by a yeast two-hybrid(More)
Joubert syndrome related disorders (JSRDs) have broad but variable phenotypic overlap with other ciliopathies. The molecular etiology of this overlap is unclear but probably arises from disrupting common functional module components within primary cilia. To identify additional module elements associated with JSRDs, we performed homozygosity mapping followed(More)
The retinas of mice null for the neural retina leucine zipper transcription factor (Nrl-/-) contain no rods but are populated instead with photoreceptors that on ultrastructural, histochemical, and molecular criteria appear cone like. To characterize these photoreceptors functionally, responses of single photoreceptors of Nrl-/- mice were recorded with(More)
Arrestins are proteins that arrest the activity of G protein-coupled receptors (GPCRs). While it is well established that normal inactivation of photoexcited rhodopsin, the GPCR of rod phototransduction, requires arrestin (Arr1), it has been controversial whether the same requirement holds for cone opsin inactivation. Mouse cone photoreceptors express two(More)