Cheryl L. Malone

Learn More
The Saccharomyces cerevisiae Sln1 protein is a 'two-component' regulator involved in osmotolerance. Two-component regulators are a family of signal-transduction molecules with histidine kinase activity common in prokaryotes and recently identified in eukaryotes. Phosphorylation of Sln1p inhibits the HOG1 MAP kinase osmosensing pathway via a phosphorelay(More)
Orthopedic implant-related bacterial infections are associated with high morbidity that may lead to limb amputation and exert significant financial burden on the healthcare system. Staphylococcus aureus is a dominant cause of these infections, and increased incidence of community-associated methicillin-resistant S. aureus (CA-MRSA) is being reported. The(More)
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is an emerging contributor to biofilm-related infections. We recently reported that strains lacking sigma factor B (sigB) in the USA300 lineage of CA-MRSA are unable to develop a biofilm. Interestingly, when spent media from a USA300 sigB mutant was incubated with other S. aureus(More)
With the emergence of Staphylococcus aureus as a prominent pathogen in community and healthcare settings, there is a growing need for effective reporter tools to facilitate physiology and pathogenesis studies. Fluorescent proteins are ideal as reporters for their convenience in monitoring gene expression, performing host interaction studies, and monitoring(More)
The CXC chemokine receptor 2 (CXCR2) on neutrophils, which recognizes chemokines produced at the site of infection, plays an important role in antimicrobial host defenses such as neutrophil activation and chemotaxis. Staphylococcus aureus is a successful human pathogen secreting a number of proteolytic enzymes, but their influence on the host immune system(More)
The yeast histidine kinase, Sln1p, is a plasma membrane-associated osmosensor that regulates the activity of the osmotic stress MAP kinase pathway. Changes in the osmotic environment of the cell influence the autokinase activity of the cytoplasmic kinase domain of Sln1p. Neither the nature of the stimulus, the mechanism by which the osmotic signal is(More)
Staphylococcus aureus is a known cause of chronic biofilm infections that can reside on medical implants or host tissue. Recent studies have demonstrated an important role for proteinaceous material in the biofilm structure. The S. aureus genome encodes many secreted proteases, and there is growing evidence that these enzymes have self-cleavage properties(More)
The Agr quorum-sensing system of Staphylococcus aureus modulates the expression of virulence factors in response to autoinducing peptides (AIPs). The peptides are seven to nine residues in length and have the C-terminal five residues constrained in a thiolactone ring. We have developed a new method to generate AIP structures using an engineered DnaB(More)
Two-component signal transduction systems involving histidine autophosphorylation and phosphotransfer to an aspartate residue on a receiver molecule have only recently been discovered in eukaryotes, although they are well studied in prokaryotes. The Sln1 protein of Saccharomyces cerevisiae is a two-component regulator involved in osmotolerance.(More)
Expression from a human cytomegalovirus early promoter (E1.7) has been shown to be activated in trans by the IE2 gene products (C.-P. Chang, C. L. Malone, and M. F. Stinski, J. Virol. 63:281-290, 1989). Using wild-type and mutant viral proteins, we have defined the protein regions required for transactivation of the E1.7 promoter in IE2 and for augmentation(More)