Learn More
Mesenchymal stem cells (MSCs) have been exploited as cellular vectors to treat a wide array of diseases but the mechanisms responsible for their therapeutic effect remain indeterminate. Previously, we reported that MSCs inhibit bleomycin (BLM)-induced inflammation and fibrosis within the lungs of mice. Interrogation of the MSC transcriptome identified(More)
Accumulated evidence has shown that reactive oxygen species (ROS) are important mediators of cell signaling events such as inflammatory reactions (superoxide) and the maintenance of vascular tone (nitric oxide). However, overproduction of ROS such as superoxide has been associated with the pathogenesis of a variety of diseases including cardiovascular(More)
In this report we examine biochemical and genetic alterations in DNA topoisomerase II (topoisomerase II) in K562 cells selected for resistance in the presence of etoposide (VP-16). Previously, we have demonstrated that the 30-fold VP-16-resistant K/VP.5 cell line exhibits decreased stability of drug-induced topoisomerase II/DNA covalent complexes, requires(More)
Idiopathic pulmonary fibrosis is an incurable fibrosing disorder that progresses relentlessly to respiratory failure. We hypothesized that a product of heme oxygenase activity, carbon monoxide (CO), may have anti-fibrotic effects. To test this hypothesis, mice treated with intratracheal bleomycin were exposed to low-concentration inhaled CO or ambient air.(More)
Influenza infection is widespread in the United States and the world. Despite low mortality rates due to infection, morbidity is common and little is known about the molecular events involved in recovery. Influenza infection results in persistent distal lung remodeling, and the mechanism(s) involved are poorly understood. Recently IL-22 has been found to(More)
We have investigated several molecular events that occur during the process of tamoxifen-induced apoptosis in human breast carcinoma cells. We show that the treatment of either MCF-7 (containing wild-type p53) or MDA-MB-231 cells (containing mutant p53) with tamoxifen resulted in apoptotic nuclear changes and an increase in the pre-G1 apoptotic population.(More)
A Chinese hamster ovary (CHO) cell line highly resistant to the non-cleavable complex-forming topoisomerase II inhibitor dexrazoxane (ICRF-187, Zinecard) was selected. The resistant cell line (DZR) was 1500-fold resistant (IC50 = 2800 vs 1.8 microM) to continuous dexrazoxane exposure. DZR cells were also cross-resistant (8- to 500-fold) to other(More)
Etoposide (VP-16)-resistant K562 cells (K/VP.5) were 26-fold resistant to VP-16, due in part to a reduction in DNA topoisomerase II (topoisomerase II) protein levels. Compared with parental K562 cells, VP-16-resistant K/VP.5 cells were found to be 3.4-fold more sensitive to the effects of dexrazoxane (ICRF-187), a topoisomerase II inhibitor that does not(More)
Asbestosis is a chronic form of interstitial lung disease characterized by inflammation and fibrosis that results from the inhalation of asbestos fibers. Although the pathogenesis of asbestosis is poorly understood, reactive oxygen species may mediate the progression of this disease. The antioxidant enzyme extracellular superoxide dismutase (EC-SOD) can(More)
During cellular apoptosis, retinoblastoma protein (RB) is subjected to cleavage near the carboxyl terminus by a caspase-3-like protease. In addition, an heretofore unidentified protease cleaves RB internally, generating fragments of 68 and 48 kDa. Internal cleavage abrogates the ability of RB to associate with E2F. To investigate the mechanism of RB(More)