Learn More
The past two decades have seen an increasing number of virulent infectious diseases in natural populations and managed landscapes. In both animals and plants, an unprecedented number of fungal and fungal-like diseases have recently caused some of the most severe die-offs and extinctions ever witnessed in wild species, and are jeopardizing food security.(More)
Host population thresholds for the invasion or persistence of infectious disease are core concepts of disease ecology and underlie disease control policies based on culling and vaccination. However, empirical evidence for these thresholds in wildlife populations has been sparse, although recent studies have begun to address this gap. Here, we review the(More)
We review the literature on spatial host-parasitoid and predator-prey models. Dispersal on its own is not stabilizing and can destabilize a stable local equilibrium. We identify three mechanisms whereby limited dispersal of hosts and parasitoids combined with other features, such as spatial and temporal heterogeneity, can promote increased persistence and(More)
BACKGROUND Rescuing amphibian diversity is an achievable conservation challenge. Disease mitigation is one essential component of population management. Here we assess existing disease mitigation strategies, some in early experimental stages, which focus on the globally emerging chytrid fungus Batrachochytrium dendrobatidis. We discuss the precedent for(More)
Understanding the evolutionary history of microbial pathogens is critical for mitigating the impacts of emerging infectious diseases on economically and ecologically important host species. We used a genome resequencing approach to resolve the evolutionary history of an important microbial pathogen, the chytrid Batrachochytrium dendrobatidis (Bd), which has(More)
Understanding spatial population dynamics is fundamental for many questions in ecology and conservation. Many theoretical mechanisms have been proposed whereby spatial structure can promote population persistence, in particular for exploiter-victim systems (host-parasite/pathogen, predator-prey) whose interactions are inherently oscillatory and therefore(More)
Most species live in species-rich food webs; yet, for a century, most mathematical models for population dynamics have included only one or two species. We ask whether such models are relevant to the real world. Two-species population models of an interacting consumer and resource collapse to one-species dynamics when recruitment to the resource population(More)
Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis, is an emerging infectious disease implicated in declines of amphibian populations around the globe. An emerging infectious disease is one that has recently been discovered; has recently increased in incidence, geography, or host range; or is newly evolved. For any given outbreak(More)
Global amphibian decline by chytridiomycosis is a major environmental disaster that has been attributed to either recent fungal spread or environmental change that promotes disease. Here, we present a population genetic comparison of Batrachochytrium dendrobatidis isolates from an intensively studied region of frog decline, the Sierra Nevada of California.(More)