Learn More
Evidence from comparative studies of gene expression and evolution suggest that human neocortical neurons may be characterized by unusually high levels of energy metabolism. The current study examined whether there is a disproportionate increase in glial cell density in the human frontal cortex in comparison with other anthropoid primate species (New World(More)
Nerve myelination facilitates saltatory action potential conduction and exhibits spatiotemporal variation during development associated with the acquisition of behavioral and cognitive maturity. Although human cognitive development is unique, it is not known whether the ontogenetic progression of myelination in the human neocortex is evolutionarily(More)
OBJECTIVES Von Economo neurons (VENs) are defined by their thin, elongated cell body and long dendrites projecting from apical and basal ends. These distinctive neurons are mostly present in anterior cingulate (ACC) and fronto-insular (FI) cortex, with particularly high densities in cetaceans, elephants, and hominoid primates (i.e., humans and apes). This(More)
Inhibitory GABAergic interneurons are important for shaping patterns of activity in neocortical networks. We examined the distributions of inhibitory interneuron subtypes in layer II/III of areas V1 and V2 in 18 genera of anthropoid primates including New World monkeys, Old World monkeys, and hominoids (apes and humans). Interneuron subtypes were identified(More)
Neural changes that occurred during human evolution to support language are poorly understood. As a basis of comparison to humans, we used design-based stereological methods to estimate volumes, total neuron numbers, and neuron densities in Brodmann's areas 44 and 45 in both cerebral hemispheres of 12 chimpanzees (Pan troglodytes), one of our species'(More)
The primate cerebral cortex is characterized by regional variation in the structure of pyramidal neurons, with more complex dendritic arbors and greater spine density observed in prefrontal compared with sensory and motor cortices. Although there are several investigations in humans and other primates, virtually nothing is known about regional variation in(More)
Cholinergic innervation of the frontal cortex is important in higher cognitive functions and may have been altered in humans relative to other species to support human-specific intellectual capacities. To evaluate this hypothesis we conducted quantitative comparative analyses of choline acetyltransferase-immunoreactive axons in cortical areas 9, 32, and 4(More)
Human language is distinctive compared with the communication systems of other species. Yet, several questions concerning its emergence and evolution remain unresolved. As a means of evaluating the neuroanatomical changes relevant to language that accompanied divergence from the last common ancestor of chimpanzees, bonobos and humans, we defined the(More)
Long projection axons from the Ch4 cell group of the nucleus basalis of Meynert (nbM) provide cholinergic innervation to the neurons of the cerebral cortex. This cortical cholinergic innervation has been implicated in behavioral and cognitive functions, including learning and memory. Recent evidence revealed differences among primate species in the pattern(More)
In this study, we assess the possibility that the evolution of human intellectual capacities was supported by changes in the supply of serotonin to the frontal cortex. To this end, quantitative comparative analyses were performed among humans, chimpanzees, and macaques. Immunohistochemical methods were used to visualize serotonin transporter-immunoreactive(More)