Learn More
Intrinsic burst and rhythmic burst discharges (RBDs) are elicited by activation of T-type Ca(2+) channels in the thalamic reticular nucleus (TRN). TRN bursts are believed to be critical for generation and maintenance of thalamocortical oscillations, leading to the spike-and-wave discharges (SWDs), which are the hallmarks of absence seizures. We observed(More)
Endogenous opioids generate analgesic signals in the periaqueductal gray (PAG). However, because cell types in the PAG are difficult to identify, its neuronal mechanism has remained poorly understood. To address this issue, we characterized PAG neurons by their electrical properties using differentially labeled GABAergic and output neurons in the PAG. We(More)
Neurons of the reticular thalamus (RT) display oscillatory burst discharges that are believed to be critical for thalamocortical network oscillations related to absence epilepsy. Ca²+-dependent mechanisms underlie such oscillatory discharges. However, involvement of high-voltage activated (HVA) Ca²+ channels in this process has been discounted. We examined(More)
  • 1