Cheol-Young Ock

Learn More
Word sense disambiguation (WSD) is a difficult problem in Computational Linguistics, mostly because of the use of a fixed sense inventory and the deep level of granularity. This paper formulates WSD as a variant of the traveling salesman problem (TSP) to maximize the overall semantic relatedness of the context to be disambiguated. Ant colony optimization, a(More)
Classifying events is challenging in Twitter because tweets texts have a large amount of temporal data with a lot of noise and various kinds of topics. In this paper, we propose a method to classify events from Twitter. We firstly find the distinguishing terms between tweets in events and measure their similarities with learning language models such as(More)
This paper proposes using linguistic knowledge from Wik-tionary to improve lexical disambiguation in multiple languages, focusing on part-of-speech tagging in selected languages with various characteristics including English, Vietnamese, and Korean. Dictionaries and subsumption networks are first automatically extracted from Wiktionary. These linguistic(More)