Chenyang Zhao

Learn More
The scope of functional heterogeneity in macrophages has been defined by two polarized end states known as M1 and M2, which exhibit the proinflammatory activities necessary for host defense and the tissue repair activities required for restoration of homeostasis, respectively. Macrophage populations in different tissue locations exist in distinct phenotypic(More)
The expression of neutrophil-specific chemokines is known to be regulated via adenine-uridine-rich sequence elements in the 3'-untranslated regions of their mRNAs that confer a high degree of mRNA instability. Although the presence of intron sequences in eukaryotic genes is known to enhance expression, the effect of intron content on the rate of mature,(More)
IL-17 contributes to inflammatory response in part by promoting enhanced expression of chemokines, such as CXCL1, by prolonging the t(1/2) of this constitutively unstable mRNA. Although IL-17 is a weak stimulus for transcription of the CXCL1 gene, it strongly potentiates message accumulation via stabilization when the mRNA is transcribed in cells stimulated(More)
Regulation of neutrophil chemokine gene expression represents an important feature in tissue inflammation. While chemokine gene transcription through the action of NFkappaB is recognized as an essential component of this process, it is now clear that post-transcriptional mechanisms, particularly the rates of decay of mature cytoplasmic mRNA, provides an(More)
In this report, we demonstrate that cellular stress regulates expression of IFRD1 by a post-transcriptional control mechanism. IFRD1 mRNA and protein are elevated in tunicamycin-treated human kidney epithelial cells via stabilization of the mRNA. IFRD1 mRNA instability in resting cells requires translation of an upstream open reading frame (ORF) that(More)
mRNAs encoding inflammatory chemokines that recruit neutrophils frequently exhibit short half-lives that serve to limit their expression under inappropriate conditions but are often prolonged to ensure adequate levels during inflammatory response. Extracellular stimuli that modulate the stability of such mRNAs may be the same as the transcriptional(More)
Cellular stress enhances inflammatory cytokine gene expression by inducing cEBP homologous protein (CHOP). Engaging cell stress via thapsigargin induced CHOP and selectively prolonged lipopolysaccharide-stimulated interleukin-6 (IL-6) expression in bone marrow-derived macrophages from wild-type (WT) but not CHOP knockout (KO) mice. To determine the impact(More)
The impact of environmental stressors on the magnitude of specific chemokine gene expression was examined in mouse bone mar-row–derived macrophages stimulated through various TLRs. Levels of TLR-stimulated CXCL1 and CXCL2 but not CXCL10 or CCL5 mRNAs were selectively enhanced (>10-fold) in stressed macrophages. The amplification was also manifested for(More)
The impact of environmental stressors on the magnitude of specific chemokine gene expression was examined in mouse bone marrow-derived macrophages stimulated through various TLRs. Levels of TLR-stimulated CXCL1 and CXCL2 but not CXCL10 or CCL5 mRNAs were selectively enhanced (>10-fold) in stressed macrophages. The amplification was also manifested for other(More)
  • 1