Chenyang Xue

Learn More
The MEMS vector hydrophone is a novel acoustic sensor with a "four-beam-cilia" structure. Based on the MEMS vector hydrophone with this structure, the paper studies the method of estimated direction of arrival (DOA). According to various research papers, many algorithms can be applied to vector hydrophones. The beam-forming approach and bar graph approach(More)
A 1 × 16 capacitive micro-machined ultrasonic transducer linear array was designed, fabricated, and tested for underwater imaging in the low frequency range. The linear array was fabricated using Si-SOI bonding techniques. Underwater transmission performance was tested in a water tank, and the array has a resonant frequency of 700 kHz, with pressure(More)
To meet measurement needs in harsh environments, such as high temperature and rotating applications, a wireless passive Low Temperature Co-fired Ceramics (LTCC) temperature sensor based on ferroelectric dielectric material is presented in this paper. As a LC circuit which consists of electrically connected temperature sensitive capacitor and invariable(More)
According to the auditory principle of fish’s lateral line organ, a novel microelectromechanical systems (MEMS) bionic vector hydrophone used for obtaining vector information of underwater sound field is introduced in this paper. It is desirable that the application of MEMS-based piezoresistive effect and bionics structure may improve the low-frequency(More)
This paper demonstrates a fabrication technology of Ag wrinkled electrodes with application in highly stretchable wireless sensors. Ag wrinkled thin films that were formed by vacuum deposition on top of pre-strained and relaxed polydimethylsiloxane (PDMS) substrates which have been treated using an O2 plasma and a surface chemical functionalization process(More)
Considerable studies have been performed on the development of optical fiber sensors modified by gold nanoparticles based on the localized surface plasmon resonance (LSPR) technique. The current paper presents a new approach in fiber surface modification technology for biosensors. Star-shaped gold nanoparticles obtained through the seed-mediated solution(More)
A high-temperature pressure sensor realized by the post-fire metallization on zirconia ceramic is presented. The pressure signal can be read out wirelessly through the magnetic coupling between the reader antenna and the sensor due to that the sensor is equivalent to an inductive-capacitive (LC) resonance circuit which has a pressure-sensitive resonance(More)
An LC resonant pressure sensor with improved performance is presented in this paper. The sensor is designed with a buried structure, which protects the electrical components from contact with harsh environments and reduces the resonant-frequency drift of the sensor in high-temperature environments. The pressure-sensitive membrane of the sensor is optimized(More)