Learn More
Distributed optimization methods for large-scale machine learning suffer from a communication bottleneck. It is difficult to reduce this bottleneck while still efficiently and accurately aggregating partial work from different machines. In this paper , we present a novel generalization of the recent communication-efficient primal-dual framework (COCOA) for(More)
General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every(More)
The scale of modern datasets necessitates the development of efficient distributed optimization methods for machine learning. We present a general-purpose framework for the distributed environment, CoCoA, that has an efficient communication scheme and is applicable to a wide variety of problems in machine learning and signal processing. We extend the(More)
In this paper we generalize the framework of the feasible descent method (FDM) to a randomized (R-FDM) and a coordinate-wise random feasible descent method (RC-FDM) framework. We show that the famous SDCA algorithm for optimizing the SVM dual problem, or the stochastic coordinate descent method for the LASSO problem, fits into the framework of RC-FDM. We(More)
In this paper we study inexact dumped Newton method implemented in a distributed environment. We start with an original DiSCO algorithm [Communication-Efficient Distributed Optimization of Self-Concordant Empirical Loss, Yuchen Zhang and Lin Xiao, 2015]. We will show that this algorithm may not scale well and propose an algorithmic modifications which will(More)
In this paper we study the effect of the way that the data is partitioned in distributed optimization. The original DiSCO algorithm [Communication-Efficient Distributed Optimization of Self-Concordant Empirical Loss, Yuchen Zhang and Lin Xiao, 2015] partitions the input data based on samples. We describe how the original algorithm has to be modified to(More)
FDK is the most popular algorithm used to reconstruct 3D image in cone beam CT system. To speed up the calculation, the paper analyses the properties of FDK, and realizes the backprojection part of the arithmetic on FPGA utilizing virtex5 lx110. The paper designs an eight parallel paths system which can processes eight paths dataflow simultaneously. The(More)
In this paper we generalize the framework of the Feasible Descent Method (FDM) to a Randomized (R-FDM) and a Randomized Coordinate-wise Feasible Descent Method (RC-FDM) framework. We show that many machine learning algorithms, including the famous SDCA algorithm for optimizing the SVM dual problem, or the stochastic coordinate descent method for the LASSO(More)
  • 1