Learn More
BACKGROUND Patient-reported outcome (PRO) measures play a key role in the advancement of patient-centered care research. The accuracy of inferences, relevance of predictions, and the true nature of the associations made with PRO data depend on the validity of these measures. Errors inherent to self-report measures can seriously bias the estimation of(More)
We consider semiparametric analysis of competing risks data subject to mixed case interval censoring. The Fine-Gray model (Fine & Gray, 1999) is used to model the cumulative incidence function and is coupled with sieve semiparametric maximum likelihood estimation based on univariate or multivariate likelihood. The univariate likelihood of cause-specific(More)
Inference for cause-specific hazards from competing risks data under interval censoring and possible left truncation has been understudied. Aiming at this target, a penalized likelihood approach for a Cox-type proportional cause-specific hazards model is developed, and the associated asymptotic theory is discussed. Monte Carlo simulations show that the(More)
In this poster, an approach for best view selection of 3D models is proposed, which is based on the framework that formulates the selection as a problem of evaluating views' discrimination ability. Firstly, different views' features are extracted by unsupervised feature learning. Then classifiers are trained to evaluate each view's discrimination ability. A(More)