Learn More
We show that information about social relationships can be used to improve user-level sentiment analysis. The main motivation behind our approach is that users that are somehow "connected" may be more likely to hold similar opinions; therefore, relationship information can complement what we can extract about a user's viewpoints from their utterances.(More)
Most previous work on multilingual sentiment analysis has focused on methods to adapt sentiment resources from resource-rich languages to resource-poor languages. We present a novel approach for joint bilingual sentiment classification at the sentence level that augments available labeled data in each language with unlabeled parallel data. We rely on the(More)
Consider a person trying to spread an important message on a social network. He/she can spend hours trying to craft the message. Does it actually matter? While there has been extensive prior work looking into predicting popularity of socialmedia content, the effect of wording per se has rarely been studied since it is often confounded with the popularity of(More)
People’s interests and people’s social relationships are intuitively connected, but understanding their interplay and whether they can help predict each other has remained an open question. We examine the interface of two decisive structures forming the backbone of online social media: the graph structure of social networks — who connects with whom — and(More)
Changing someone’s opinion is arguably one of the most important challenges of social interaction. The underlying process proves difficult to study: it is hard to know how someone’s opinions are formed and whether and how someone’s views shift. Fortunately, ChangeMyView, an active community on Reddit, provides a platform where users present their own(More)
Imagine a physician and a patient doing a search on antibiotic resistance. Or a chess amateur and a grandmaster conducting a search on Alekhine's Defence. Although the topic is the same, arguably the two users in each case will satisfy their information needs with very different texts. Yet today search engines mostly adopt the one-size-fits-all solution,(More)
Consumer review sites and recommender systems typically rely on a large volume of user-contributed ratings, which makes rating acquisition an essential component in the design of such systems. User ratings are then summarized to provide an aggregate score representing a popular evaluation of an item. An inherent problem in such summarization is potential(More)
It is well known that users' behaviors (actions) in a social network are influenced by various factors such as personal interests, social influence, and global trends. However, few publications systematically study how social actions evolve in a dynamic social network and to what extent different factors affect the user actions. In this paper, we propose a(More)
Expertise matching, aiming to find the alignment between experts and queries, is a common problem in many real applications such as conference paper-reviewer assignment, product-reviewer alignment, and product-endorser matching. Most of existing methods for this problem usually find “relevant” experts for each query independently by using, e.g.,(More)