Chenhao Ge

  • Citations Per Year
Learn More
The structural and functional properties of ultrathin (<5 nm) poly(aniline) (PANI) films deposited on indium-tin oxide (ITO) have been investigated using electrochemical and attenuated total reflection (ATR) spectroscopy methods. Layer-by-layer (LbL) self-assembly was used to form films composed of one and two bilayers of PANI and poly(acrylic acid) (PAA),(More)
We report on the spectroelectrochemical characterization of conducting polymer (CP) films, composed of alternating layers of poly(aniline) (PANI) and poly(acrylic acid) (PAA), deposited on ITO-coated, planar glass substrates using layer-by-layer self-assembly. Absorbance changes associated with voltammetrically induced redox changes in ultrathin films(More)
Cellular energy transduction processes are often driven by transmembrane ion gradients, and numerous artificial biomembrane systems have been developed that allow for chemically or light-induced charge transport into/out of liposomes. Liposomal architectures, however, are not readily interfaced to a solid-state transducer. Formation of an ion gradient(More)
Facilitated ion transport across an artificial lipid bilayer coupled to a solid substrate is a function common to several types of bioelectronic devices based on supported membranes, including biomimetic fuel cells and ion channel biosensors. Described here is fabrication of a pH-sensitive transducer composed of a porous sol-gel layer derivatized with(More)
Described here is fabrication of a pH-sensitive, optically transparent transducer composed of a planar indium-tin oxide (ITO) electrode overcoated with a a poly(aniline) (PANI) thin film and a porous sol-gel layer. Adsorption of the PANI film renders the ITO electrode sensitive to pH, whereas the sol-gel spin-coated layer makes the upper surface compatible(More)
  • 1