Learn More
Poly(amidoamine) (PAMAM) dendrimer derivatives have been investigated for their biological applications, especially for delivery of drugs, including antimicrobial drugs to eukaryotic cells, but their effects on bacterial cells are largely unexplored. Herein we report that amino-terminated PAMAM dendrimers are highly toxic to the common Gram-negative(More)
Protein-resistant films derived from the fifth-generation poly(amidoamine) dendrimers (PAMAM G5) functionalized with oligo(ethylene glycol) (OEG) derivatives consisting of various ethylene glycol units (EG(n), n = 3, 4, and 6) were prepared on the self-assembled monolayers (SAMs) of 11-mercaptoundecanoic acid (MUA) on gold substrates. The resulting films(More)
A versatile and stable liposomal platform is developed for rapid optimization of its peripheral composition. The platform is based on polydiacetylene lipids terminated with alkynyl groups. Conditions for copper-catalyzed azide-alkyne cycloaddition (a "click" reaction) are optimized for rapid attachment of azides with controlled composition onto the(More)
Metal-organic coordination networks (MOCNs) have attracted wide interest because they provide a novel route towards porous materials that may find applications in molecular recognition, catalysis, gas storage and separation. The so-called rational design principle-synthesis of materials with predictable structures and properties-has been explored using(More)
We demonstrate that local oxidation using a conductive atomic force microscope (c-AFM) can achieve patterning of sub-10-nm spots on protein-resistant oligo(ethylene glycol)-terminated alkyl monolayers on silicon substrates. Such a high resolution of nanopatterning with a c-AFM on organic thin films was realized for the first time by applying ultrashort(More)
We have investigated the antibacterial activity and cytotoxicity of a series of amino-terminated poly(amidoamine) (PAMAM) dendrimers modified with poly(ethylene glycol) (PEG) groups. The antibacterial activity of the PAMAM dendrimers and their derivatives against the common ocular pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, was evaluated by(More)
We present investigations on noncovalent bonding and supramolecular self-assembly of two related molecular building blocks at a noble metal surface: 4-[trans-2-(pyrid-4-yl-vinyl)]benzoic acid (PVBA) and 4-[(pyrid-4-yl-ethynyl)]benzoic acid (PEBA). These rigid, rodlike molecules comprising the same complementary moieties for hydrogen bond formation are(More)
In this article, we present the first report on the antibacterial activity and cytotoxicity of poly(amidoamine) (PAMAM) dendrimers immobilized on three types of titanium-based substrates with and without calcium phosphate coating. We show that the amino-terminated PAMAM dendrimers modified with various percentages (0-60%) of poly(ethylene glycol) (PEG)(More)
We present a novel approach for preparation of nanometric protein arrays, based on binding of avidin molecules to nanotemplates generated by conductive AFM lithography on robust oligo(ethylene glycol)-terminated monolayers on silicon (111) surfaces that are protein-resistant. We showed that only biotinated-BSA but not the native BSA bind to the avidin(More)
Oxidation of protein (bovine albumin serum) by air still occurred under the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction conditions even in the presence of a Cu(I)-stabilizing tris(triazole) ligand. Anaerobic conditions not only avoided the oxidation of the protein, but also greatly accelerated the CuAAC reaction using a water-soluble(More)