Chengzhen Wei

Learn More
Uniform NiS2 nanocubes are successfully synthesized with a microwave-assisted method. Interestingly, NiS2 nanocubes, nanospheres and nanoparticles are obtained by controlling microwave reaction time. NiS2 nanomaterials are primarily applied to supercapacitors and cocatalytic enhancing photocatalytic H2 production. Different morphologies of NiS2(More)
Mesoporous ZnS-NiS composites are prepared via ion- exchange reactions using ZnS as the precursor. The prepared mesoporous ZnS-NiS composite materials have large surface areas (137.9 m(2) g(-1)) compared with the ZnS precursor. More importantly, the application of these mesoporous ZnS-NiS composites as nonenzymatic glucose sensors was successfully explored.(More)
A bottom-up-then-up-down route was proposed to construct multi-level Bi2S3 hierarchical architectures assembled by two-dimensional (2D) Bi2S3 sheet-like networks. BiOCOOH hollow spheres and flower-like structures, which are both assembled by 2D BiOCOOH nanosheets, were prepared first by a "bottom-up" route through a "quasi-emulsion" mechanism. Then the(More)
Single-crystalline hyperbranched nanostructures of iron hydroxyl phosphate Fe5(PO4)4(OH)3·2H2O (giniite) with orthorhombic phase were synthesized through a simple route. They have a well-defined dendrite fractal structure with a pronounced trunk and highly ordered branches. The toxicity test shows that the hyperbranched nanostructures have good(More)
ZnO materials with a range of different morphologies have been successfully synthesized via a simple double-solvothermal method in the presence of glycine. The morphologies of the products can be controlled from superstructures to microrods by adjusting the amount of water in the EtOH/H2O system. Photoluminescence (PL) studies reveal that the more amount of(More)
Conventional crystalline β-MnO2 usually exhibits poor electrochemical activities due to the narrow tunnels in its rutile-type structure. In this study, we synthesized a novel 2D β-MnO2 network with long-range order assembled by β-MnO2 nanowires and demonstrated that the novel 2D β-MnO2 network exhibits enhanced electrochemical performances. The 2D network(More)
  • 1