Chengyi Hu

  • Citations Per Year
Learn More
  • Chengyi Hu
  • Journal of Computer Science and Technology
  • 1996
In solving application problems, many large-scale nonlinear systems of equations result in sparse Jacobian matrices. Such nonlinear systems are called sparse nonlinear systems. The irregularity of the locations of nonzero elements of a general sparse matrix makes it very difficult to generally map sparse matrix computations to multiprocessors for parallel(More)
During the past two years, the introduction of DMSO has revolutionized the fabrication of high-quality pervoskite MAPbI3 (MA = CH3NH3) films for solar cell applications. In the developed DMSO process, the formation of (MA)2Pb3I8·2DMSO (shorted as Pb3I8) has well recognized as a critical factor to prepare high-quality pervoskite films and thus accomplish(More)
Electrochemical partial reforming of organics provides an alternative strategy to produce valuable organic compounds while generating H2 under mild conditions. In this work, highly selective electrochemical reforming of ethanol into ethyl acetate is successfully achieved by using ultrathin Co3O4 nanosheets with exposed (111) facets as an anode catalyst.(More)
In this work, a facile ion-pairing strategy for asymmetric synthesis of optically active negatively charged chiral metal nanoparticles using chiral ammonium cations is demonstrated. A new thiolated chiral three-concentric-shell cluster, [Ag28Cu12(SR)24](4-), was first synthesized as a racemic mixture and characterized by single-crystal X-ray structure(More)
A facile method has been developed for face-to-face assembly of two-dimensional surfactant-free Pd nanosheets into one-dimensional Pd superlattice nanowires. The length of the Pd nanowires can be well controlled by introducing cations of different concentration and charge density. Our studies reveal that cations with higher charge density have stronger(More)
3D PdCu alloy nanosheets exhibit enhanced electrocatalytic activity toward hydrogen evolution reaction and ethanol oxidation reaction in alkaline media. Simultaneous hydrogen and acetate production via a solar-powered cell for ethanol reforming has been fabricated using the nanosheets as bifunctional electrocatalysts. The device is promising for the(More)
The electrochemical conversion of CO2 and H2O into syngas using renewably generated electricity is an attractive approach to simultaneously achieve chemical fixation of CO2 and storage of renewable energy. Developing cost-effective catalysts for selective electroreduction of CO2 into CO is essential to the practical applications of the approach. We report a(More)
  • 1