Learn More
The rostral ventrolateral medulla (RVLM) is a relay point that provides supraspinal excitatory input to sympathetic preganglionic neurons in the regulation of blood pressure. The importance of the RVLM is further highlighted by observations that an increase of RVLM sensitivity to angiotensin II and enhanced sympathetic activity are associated with(More)
Melatonin inhibits nitric oxide (NO)-induced relaxation of coronary arteries. We tested the hypothesis that melatonin increases the phosphorylation of phosphodiesterase 5 (PDE5), which increases the activity of the enzyme and thereby decreases intracellular cGMP accumulation in response to NO and inhibits NO-induced relaxation. Sodium nitroprusside (SNP)(More)
It is well established that the central cardiovascular effects of angiotensin II (Ang II) involve superoxide production. However, the intracellular mechanism by which reactive oxygen species (ROS) signaling regulates neuronal Ang II actions remains to be elucidated. In the present study, we have used neuronal cells in primary cultures from the hypothalamus(More)
Increasing evidence indicates that both the angiotensin II (ANG II) and gamma-aminobutyric acid (GABA) systems play a very important role in the regulation of blood pressure (BP). However, there is little information concerning the interactions between these two systems in the nucleus tractus solitarii (NTS). In the present study, we examined the effects of(More)
Angiotensin II (Ang II) elicits Ang II type 1 receptor (AT1-R)-mediated increases in neuronal firing within the hypothalamus and brainstem that are ultimately responsible for physiological actions such as increased blood pressure and fluid intake. Although there is a growing literature on the intracellular mechanisms that mediate the actions of Ang II via(More)
Angiotensin II (ANG II) increases GABA(B) receptor expression in neuronal cultures from the nucleus tractus solitarii (NTS). In the present study, the chronic effects of ANG II on GABA(B) receptor expression and activity were examined in the NTS of Sprague-Dawley rats. Intracerebroventricular infusion of ANG II caused a significant elevation in blood(More)
Angiotensin II (Ang II) plays an important role in the central control of blood pressure and baroreflexes. These effects are initiated by stimulation of Ang II type 1 (AT(1)) receptors on neurons within the hypothalamus and brain stem, and involve increasing the activity of noradrenergic, substance P, and glutamatergic pathways. The goal of this study is to(More)
Apelin-13 causes vasoconstriction by acting directly on APJ receptors in vascular smooth muscle (VSM) cells; however, the ionic mechanisms underlying this action at the cellular level remain unclear. Large-conductance Ca(2+)-activated K(+) (BKCa) channels in VSM cells are critical regulators of membrane potential and vascular tone. In the present study, we(More)
The peripheral apelin system plays a significant role in cardiovascular homeostasis and in the pathophysiology of cardiovascular diseases. However, the central effect of this neurohormonal system in neural control of cardiovascular function remains poorly understood. Thus, this study was undertaken to evaluate the effect of apelin in the rostral(More)
To investigate the influence of different cell penetrating peptides (CPPs-TAT, Penetratin and Mastoparan), on the transport of doxorubicin encapsulating transferrin (Tf)-liposomes across brain endothelial barrier, in vitro and in vivo. The cellular uptake of dual-functionalized, (Tf-CPP), liposomes into various tumor cells was assessed using HPLC. The(More)