Learn More
Angiotensin II (Ang II) elicits Ang II type 1 receptor (AT1-R)-mediated increases in neuronal firing within the hypothalamus and brainstem that are ultimately responsible for physiological actions such as increased blood pressure and fluid intake. Although there is a growing literature on the intracellular mechanisms that mediate the actions of Ang II via(More)
Increasing evidence indicates that both the angiotensin II (ANG II) and gamma-aminobutyric acid (GABA) systems play a very important role in the regulation of blood pressure (BP). However, there is little information concerning the interactions between these two systems in the nucleus tractus solitarii (NTS). In the present study, we examined the effects of(More)
Angiotensin II (ANG II) increases GABA(B) receptor expression in neuronal cultures from the nucleus tractus solitarii (NTS). In the present study, the chronic effects of ANG II on GABA(B) receptor expression and activity were examined in the NTS of Sprague-Dawley rats. Intracerebroventricular infusion of ANG II caused a significant elevation in blood(More)
Apelin-13 causes vasoconstriction by acting directly on APJ receptors in vascular smooth muscle (VSM) cells; however, the ionic mechanisms underlying this action at the cellular level remain unclear. Large-conductance Ca(2+)-activated K(+) (BKCa) channels in VSM cells are critical regulators of membrane potential and vascular tone. In the present study, we(More)
Angiotensin II (Ang II) plays an important role in the central control of blood pressure and baroreflexes. These effects are initiated by stimulation of Ang II type 1 (AT(1)) receptors on neurons within the hypothalamus and brain stem, and involve increasing the activity of noradrenergic, substance P, and glutamatergic pathways. The goal of this study is to(More)
To investigate the influence of different cell penetrating peptides (CPPs-TAT, Penetratin and Mastoparan), on the transport of doxorubicin encapsulating transferrin (Tf)-liposomes across brain endothelial barrier, in vitro and in vivo. The cellular uptake of dual-functionalized, (Tf-CPP), liposomes into various tumor cells was assessed using HPLC. The(More)
RATIONALE Central angiotensin (Ang) II inhibits baroreflex and plays an important role in the pathogenesis of hypertension. However, the underlying molecular mechanisms are still not fully understood. OBJECTIVE Our objective in the present study was to characterize the signal transduction mechanism of phosphatidylinositol 3-kinase (PI3K) involvement in(More)
Angiotensin II (Ang II), acting at Ang II type 1 receptors (AT1Rs), increases the firing rate of neurons from Wistar-Kyoto (WKY) rat brain via protein kinase C (PKC)- and calcium-calmodulin kinase II (CaMKII)-dependent mechanisms. The objectives of this study were twofold; first, to compare the Ang-II-stimulated increase in firing of neurons from WKY and(More)
Microinjection of apelin-13 into the rostral ventrolateral medulla (RVLM) in the brainstem increases blood pressure in rats. In the present study, we tested the hypotheses that apelin-13 directly stimulates neuronal activity in neurons cultured from the brainstem and that NAD(P)H oxidase-derived reactive oxygen species are involved in this action of(More)