Learn More
OBJECTIVE Accurate estimation of food portion size is of paramount importance in dietary studies. We have developed a small, chest-worn electronic device called eButton which automatically takes pictures of consumed foods for objective dietary assessment. From the acquired pictures, the food portion size can be calculated semi-automatically with the help of(More)
Recent advances in mobile devices have made profound changes in people's daily lives. In particular, the impact of easy access of information by the smartphone has been tremendous. However, the impact of mobile devices on healthcare has been limited. Diagnosis and treatment of diseases are still initiated by occurrences of symptoms, and technologies and(More)
A wearable computer, called eButton, has been developed for evaluation of the human lifestyle. This ARM-based device acquires multimodal data from a camera module, a motion sensor, an orientation sensor, a light sensor and a GPS receiver. Its performance has been tested both in our laboratory and by human subjects in free-living conditions. Our results(More)
A recent study on witricity (wireless electricity) has demonstrated that wireless energy can be delivered over a moderate distance using strongly coupled magnetic resonance. The objective of this work is to apply the witricity technology to the problem of powering a wireless Body Sensor Network (wBSN). The theory of witricity is investigated using coupled(More)
Recently, wearable computers have become new members in the family of mobile electronic devices, adding new functions to those provided by smart-phones and tablets. As "always-on" miniature computers in the personal space, they will play increasing roles in the field of healthcare. In this work, we present our development of eButton, a wearable computer(More)
The fine-tuning of digit forces to object properties can be disrupted by carpal tunnel syndrome (CTS). CTS' effects on hand function have mainly been investigated using predictable manipulation tasks; however, unpredictable perturbations are commonly encountered during manual tasks, presenting situations which may be more challenging to CTS patients given(More)
Eating event detection is an important problem in automatic dietary study using a wearable computer, such as the eButton. In this work, we approach this detection problem based on the use of a small magnet marker attached to a finger and a miniature magnetometer installed within the eButton. Our experimental results indicate that our magnetic approach is(More)
  • 1