Chenggang Clarence Yan

Learn More
High Efficiency Video Coding (HEVC) provides superior coding efficiency than previous video coding standards at the cost of increasing encoding complexity. The complexity increase of motion estimation (ME) procedure is rather significant, especially when considering the complicated partitioning structure of HEVC. To fully exploit the coding efficiency(More)
High Efficiency Video Coding (HEVC) uses a very flexible tree structure to organize coding units, which leads to a superior coding efficiency compared with previous video coding standards. However, such a flexible coding unit tree structure also places a great challenge for encoders. In order to fully exploit the coding efficiency brought by this structure,(More)
Increasing evidences have indicated that microRNAs (miRNAs) are functionally associated with the development and progression of various complex human diseases. However, the roles of miRNAs in multiple biological processes or various diseases and their underlying molecular mechanisms still have not been fully understood yet. Predicting potential(More)
The H.264/AVC deblocking filter is becoming the performance bottleneck of H.264/AVC parallelization on many-core platform. Efficient parallelization of the deblocking filter on a many-core platform is challenging, because the deblocking filter has complicated data dependencies, which provide insufficient parallelism for so many cores. Furthermore,(More)
By utilizing captured characteristics of surrounding contexts through widely used Bluetooth sensor, user-centric social contexts can be effectively sensed and discovered by dynamic Bluetooth information. At present, state-of-the-art approaches for building classifiers can basically recognize limited classes trained in the learning phase; however, due to the(More)
This paper presents the optimized design and implementation of sparse tensor-times-dense matrix multiply (SpTTM) for CPU and GPU platforms. This primitive is a critical bottleneck in data analysis and mining applications based on tensor methods, such as the Tucker decomposition. We first design and implement sequential SpTTM to avoid explicit data(More)
It is an important task to improve performance for sparse matrix vector multiplication (SpMV), and it is a difficult task because of its irregular memory access. General purpose GPU (GPGPU) provides high computing ability and substantial bandwidth that cannot be fully exploited by SpMV due to its irregularity. In this paper, we propose two novel methods to(More)
As the next generation standard of video coding, High Efficiency Video Coding (HEVC) is expected to be more complex than H.264/AVC. Many-core platforms are good candidates for speeding up HEVC in the case that HEVC can provide sufficient parallelism. The local parallel method (LPM) is the most promising parallel proposal for HEVC motion estimation (ME), but(More)
LncRNAs have attracted lots of attentions from researchers worldwide in recent decades. With the rapid advances in both experimental technology and computational prediction algorithm, thousands of lncRNA have been identified in eukaryotic organisms ranging from nematodes to humans in the past few years. More and more research evidences have indicated that(More)
Image content analysis is an important surround perception modality of intelligent vehicles. In order to efficiently recognize the on-road environment based on image content analysis from the large-scale scene database, relevant images retrieval becomes one of the fundamental problems. To improve the efficiency of calculating similarities between images,(More)