Chengde Wan

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
We present a hierarchical regression framework for estimating hand joint positions from single depth images based on local surface normals. The hierarchical regression follows the tree structured topology of hand from wrist to finger tips. We propose a conditional regression forest, i.e. the Frame Conditioned Regression Forest (FCRF) which uses a new normal(More)
In recent years, skeleton-based action recognition has become a popular 3D classification problem. State-of-the-art methods typically first represent each motion sequence as a high-dimensional trajectory on a Lie group with an additional dynamic time warping, and then shallowly learn favorable Lie group features. In this paper we incorporate the Lie group(More)
—In this paper, we propose a method for ranking fashion images to find the ones which might be liked by more people. We collect two new datasets from image sharing websites (Pinterest and Polyvore). We represent fashion images based on attributes: semantic attributes and data-driven attributes. To learn semantic attributes from limited training data, we use(More)
  • 1