Learn More
Language modeling approaches to information retrieval are attractive and promising because they connect the problem of retrieval with that of language model estimation, which has been studied extensively in other application areas such as speech recognition. The basic idea of these approaches is to estimate a language model for each document, and then rank(More)
Language modeling approaches to information retrieval are attractive and promising because they connect the problem of retrieval with that of language model estimation, which has been studied extensively in other application areas such as speech recognition. The basic idea of these approaches is to estimate a language model for each document, and to then(More)
The language modeling approach to retrieval has been shown to perform well empirically. One advantage of this new approach is its statistical foundations. However, feedback, as one important component in a retrieval system, has only been dealt with heuristically in this new retrieval approach: the original query is usually literally expanded by adding(More)
We present a framework for information retrieval that combines document models and query models using a probabilistic ranking function based on Bayesian decision theory. The framework suggests an operational retrieval model that extends recent developments in the language modeling approach to information retrieval. A language model for each document is(More)
We present a non-traditional retrieval problem we call subtopic retrieval. The subtopic retrieval problem is concerned with finding documents that cover many different subtopics of a query topic. In such a problem, the utility of a document in a ranking is dependent on other documents in the ranking, violating the assumption of independent relevance which(More)
Statistical language models have recently been successfully applied to many information retrieval problems. A great deal of recent work has shown that statistical language models not only lead to superior empirical performance, but also facilitate parameter tuning and open up possibilities for modeling nontraditional retrieval problems. In general ,(More)
A major limitation of most existing retrieval models and systems is that the retrieval decision is made based solely on the query and document collection; information about the actual user and search context is largely ignored. In this paper, we study how to exploit implicit feedback information, including previous queries and clickthrough information, to(More)