Cheng-Tsung Lai

Learn More
Guanine deaminase, a key enzyme in the nucleotide metabolism, catalyzes the hydrolytic deamination of guanine into xanthine. The crystal structure of the 156-residue guanine deaminase from Bacillus subtilis has been solved at 1.17-A resolution. Unexpectedly, the C-terminal segment is swapped to form an intersubunit active site and an intertwined dimer with(More)
A high-throughput screen led to the discovery of 2-amino-4-oxo-4-phenylbutanoate inhibitors of the 1,4-dihydroxy-2-naphthoyl-CoA synthase (MenB) from the menaquinone biosynthesis pathway in Mycobacterium tuberculosis. However, these compounds are unstable in solution and eliminate to form the corresponding 4-oxo-4-phenylbut-2-enoates that then react with(More)
Acinetobacter baumannii is an important human pathogen that can form biofilms and persist under harsh environmental conditions. Biofilm formation and virulence are modulated by blue light, which is thought to be regulated by a BLUF protein, BlsA. To understand the molecular mechanism of light sensing, we have used steady-state and ultrafast vibrational(More)
The genetic characterization of Taiwanese influenza A and B viruses on the basis of analyses of pairwise amino acid variations, genetic clustering, and phylogenetics was performed. A total of 548, 2,123, and 1,336 sequences of the HA1 genes of influenza A virus subtypes H1 and H3 and influenza B virus, respectively, collected during 2003 to 2006 from an(More)
Slow-onset enzyme inhibitors are of great interest for drug discovery programs since the slow dissociation of the inhibitor from the drug-target complex results in sustained target occupancy leading to improved pharmacodynamics. However, the structural basis for slow-onset inhibition is often not fully understood, hindering the development of(More)
Influenza B viruses were predominant in Taiwan during the 2004-2005 epidemic and both Victoria and Yamagata lineage viruses co-circulated. A reassortant influenza B virus that contained a Victoria lineage hemagglutinin (HA) gene and Yamagata lineage neuraminidase (NA) gene appeared first in 2002 and became predominant during the 2004-2005 epidemic. During(More)
The diaryl ethers are a novel class of antituberculosis drug candidates that inhibit InhA, the enoyl-ACP reductase involved in the fatty acid biosynthesis (FASII) pathway, and have antibacterial activity against both drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis. In the present work, we demonstrate that two time-dependent B-ring(More)
Slow-onset enzyme inhibitors are the subject of considerable interest as an approach to increasing the potency of pharmaceutical compounds by extending the residence time of the inhibitor on the target (the lifetime of the drug-receptor complex). However, rational modulation of residence time presents significant challenges because it requires additional(More)
The enoyl-ACP reductase (ENR) catalyzes the last reaction in the elongation cycle of the bacterial type II fatty acid biosynthesis (FAS-II) pathway. While the FabI ENR is a well-validated drug target in organisms such as Mycobacterium tuberculosis and Staphylococcus aureus, alternate ENR isoforms have been discovered in other pathogens, including the FabV(More)