Learn More
Feshbach resonances are the essential tool to control the interaction between atoms in ultracold quantum gases. They have found numerous experimental applications, opening up the way to important breakthroughs. This Review broadly covers the phenomenon of Feshbach resonances in ultracold gases and their main applications. This includes the theoretical(More)
The observation of the superfluid to Mott insulator phase transition of ultracold atoms in optical lattices was an enabling discovery in experimental many-body physics, providing the first tangible example of a quantum phase transition (one that occurs even at zero temperature) in an ultracold atomic gas. For a trapped gas, the spatially varying local(More)
An ultracold molecular quantum gas is created by application of a magnetic field sweep across a Feshbach resonance to a Bose-Einstein condensate of cesium atoms. The ability to separate the molecules from the atoms permits direct imaging of the pure molecular sample. Magnetic levitation enables study of the dynamics of the ensemble on extended time scales.(More)
We investigate the stability of magnetically trapped atomic Bose-Einstein condensates and thermal clouds near the transition temperature at small distances 0.5 microm< or =d< or =10 microm from a microfabricated silicon chip. For a 2 microm thick copper film, the trap lifetime is limited by Johnson noise induced currents and falls below 1 s at a distance of(More)
In few-body physics, Efimov states are an infinite series of three-body bound states that obey universal discrete scaling symmetry when pairwise interactions are resonantly enhanced. Despite abundant reports of Efimov states in recent cold atom experiments, direct observation of the discrete scaling symmetry remains an elusive goal. Here we report the(More)
Vladan Vuletić, Cheng Chin, Andrew J. Kerman, and Steven Chu Department of Physics, Stanford University, Stanford, California 94305-4060 (Received 25 August 1998) We trap 107 cesium atoms in a far red detuned 1D optical lattice. With degenerate Raman sideband cooling we achieve a vibrational ground state population of 80% for the steep trapping direction.(More)
We observe several Feshbach resonances in magnetic fields below 40 G for Cs atoms trapped in a 1D optical lattice. One resonance occurs in the lowest-energy ground state F ­ 3, mF ­ 3 which is stable against inelastic binary collisions. This opens new possibilities for Bose condensation of Cs. When the elastic collision rate far exceeds the radial vibration(More)
We demonstrate a simple, general purpose method to cool neutral atoms. A sample containing 3 3 108 cesium atoms prepared in a magneto-optical trap is cooled and simultaneously spin polarized in 10 ms at a density of 1.1 3 1011 cm23 to a phase space density nl dB 1 500, which is almost 3 orders of magnitude higher than attainable in free space with optical(More)
Optical control of atomic interactions in quantum gases is a long-sought goal of cold atom research. Previous experiments have been hindered by rapid decay of the quantum gas and parasitic deformation of the trap potential. We develop and implement a generic scheme for optical control of Feshbach resonances which yields long quantum gas lifetimes and a(More)