Cheng Chao Zheng

Learn More
We isolated and characterized a novel light-regulated cDNA from the short-day plant Pharbitis nil that encodes a protein with a leucine (Leu) zipper motif, designated PNZIP (Pharbitis nil Leu zipper). The PNZIP cDNA is not similar to any other gene with a known function in the database, but it shares high sequence homology with an Arabidopsis expressed(More)
The cell wall (CW) has been recognized as the major target of aluminum (Al) toxicity. However, the components responsible for Al accumulation and the mechanisms of Al-induced CW function disruption are still elusive. The contribution of different CW components (pectin, hemicellulose 1 [HC1], and HC2) to adsorb Al and the effect of Al on xyloglucan(More)
MicroRNAs (miRNAs) are potent regulators of gene transcription and posttranscriptional processes. The majority of miRNAs are localized within intronic regions of protein-coding genes (host genes) and have diverse functions in regulating important cellular processes in animals. To date, few plant intronic miRNAs have been studied functionally. Here we report(More)
The abundance of an mRNA encoding an HMG1/2 protein from Pharbitis nil (HMG1) has been previously shown to be regulated by light and an endogenous rhythm in cotyledons. A second Pharbitis nil HMG cDNA (HMG2) was characterized. The sequence of HMG2 was 82% and 86% identical to HMG1 at the nucleotide and amino acid level, respectively. As with HMG1, HMG2 mRNA(More)
We have isolated and characterized a new photosynthetic tissue-specific gene NTZIP (Nicotiana tabacum leucine zipper) from tobacco (N. tabacum). Its deduced amino acid sequence has two highly conserved regions, leucine zipper and [EX(n)DEXRH](2) motifs, which are related to the gene's biochemical functions. NTZIP was expressed in leaves and stems, but was(More)
BACKGROUND AND AIMS Aluminium (Al) toxicity is one of the factors limiting crop production on acid soils. However, genotypic differences exist among plant species or cultivars in response to Al toxicity. This study aims to investigate genotypic differences among eight cultivars of tatary buckwheat (Fagopyrum tataricum) for Al resistance and explore the(More)
We demonstrated that aluminum (Al)-induced oxalate secretion and plasma membrane (PM) H+-ATPase activity in tomato (Lycopersicon esculentum ‘Hezuo903’) roots were poorly correlated. In addition, vanadate, an inhibitor of PM H+-ATPase, had no effect on Al-induced oxalate secretion, but significantly inhibited enzyme activity. An anion channel inhibitor(More)
Dirigent proteins regulate coupling of monolignol plant phenols to generate the cell wall polymers lignins and lignans that are involved in structural fortification and defense against pathogens and pests. In this study, we report the temporal expression of a putative Hessian fly-responsive disease resistance dirigent-like protein-encoding gene, HfrDrd, in(More)
A cDNA clone encoding an HMG1 protein from Pharbitis nil was characterized with regard to its sequence, genomic organization and regulation in response to photoperiodic treatments that control floral induction. The HMG1 cDNA contains an open reading frame of 432 nucleotides encoding a 144 amino acid protein of approximately 16 kDa. The predicted polypeptide(More)
The mechanisms of heavy metal resistance in plants can be classified into internal tolerance and exclusion mechanisms, but exclusion of heavy metals with the help of organic acids secretion has not been well documented. Here we demonstrated the contribution of oxalate secretion to cadmium (Cd) exclusion and resistance in tomato. Different Cd resistance(More)