Chen-Zhu Wang

Learn More
Odorant-binding proteins (OBPs) mediate both perception and release of semiochemicals in insects. These proteins are the ideal targets for understanding the olfactory code of insects as well as for interfering with their communication system in order to control pest species. The two sibling Lepidopteran species Helicoverpa armigera and H. assulta are two(More)
Two sibling species, Helicoverpa assulta and Helicoverpa armigera both use (Z)-9-hexadecenal and (Z)-11-hexadecenal as their sex pheromone components but in almost reversed ratios, 93:7 and 3:97, respectively. H. assulta and H. armigera males performed upwind flight in response to the H. assulta sex pheromone blend (93:7). H. armigera responded strongly to(More)
Odorant-binding proteins (OBPs) are soluble proteins, whose role in olfaction of insects is being recognized as more and more important. We have cloned, expressed and purified an OBP (HarmOBP7) from the antennae of the moth Helicoverpa armigera. Western blot experiments indicate specific expression of this protein in the antennae of adults. HarmOBP7 binds(More)
Plant volatiles play a key role in host plant location of phytophagous insects. Cydia molesta is an important pest of pear fruit late in the growing season. We identified and quantified volatiles from immature and mature fruits of six pear varieties by using gas chromatography–mass spectrometry (GC-MS). Attractiveness of synthetic blends to adults based on(More)
In adult female Helicoverpa armigera (Hübner), the fifth tarsomere of the prothoracic legs bears 14 gustatory trichoid chemosensilla. These chemosensilla were characterized through electrophysiological experiments by stimulating with sucrose, glucose, fructose, maltose, myo-inositol and 20 common amino acids. In electrophysiological recordings from nine(More)
Both resistance and tolerance, which are two strategies that plants use to limit biotic stress, are affected by the abiotic environment including atmospheric CO(2) levels. We tested the hypothesis that elevated CO(2) would reduce resistance (i.e., the ability to prevent damage) but enhance tolerance (i.e., the ability to regrow and compensate for damage(More)
The relative proportions of components in a pheromone blend play a major role in sexual recognition in moths. Two sympatric species, Helicoverpa armigera and Helicoverpa assulta, use (Z)-11-hexadecenal (Z11-16: Ald) and (Z)-9-hexadecenal (Z9-16: Ald) as essential sex pheromone components but in very different ratios, 97∶3 and 7∶93 respectively. Using wind(More)
Behavioral and electrophysiological responses of larvae of the polyphagous moth species Helicoverpa armigera to two plant-derived allelochemicals were studied, both in larvae that had been reared on a diet devoid of these compounds and in larvae previously exposed to these compounds. In dual-choice cotton leaf disk and pepper fruit disk arena assays,(More)
Helicoverpa armigera and Helicoverpa assulta are sympatric sibling species, and in the laboratory they can interbreed and produce viable offspring. To assess the contributions of temporal barriers and sexual barriers to premating isolation, we investigated both the temporal rhythms of calling behavior and pheromone titers of H. armigera and H. assulta(More)
Sex pheromone communication of moths helps to understand the mechanisms underlying reproductive isolation and speciation. Helicoverpa armigera and Helicoverpa assulta use (Z)-11-hexadecenal (Z11-16:Ald) and (Z)-9-hexadecenal (Z9-16:Ald) as pheromone components in reversed ratios, 97:3 and 5:95, respectively. H. armigera also produces trace amount of(More)