Learn More
We present a novel neurally based model for estimating angular velocity (AV) in the bee brain, capable of quantitatively reproducing experimental observations of visual odometry and corridor-centering in free-flying honeybees, including previously unaccounted for manipulations of behaviour. The model is fitted using electrophysiological data, and tested(More)
In insects the optomotor response produces a motor action to compensate for unintended body rotation. The response is generally modeled as a Reichardt-Hassen-stein (HSD) or Barlow-Levick (BL) correlation detector, as anatomical and physiological studies in Drosophila melanogaster have demonstrated consistent neural pathways and responses in the insect brain(More)
Flying insects are capable of a wide-range of flight and cognitive behaviors which are not currently understood. The replication of these capabilities is of interest to miniaturized robotics, because they share similar size, weight, and energy constraints. Currently, embodiment of insect behavior is primarily done on ground robots which utilize simplistic(More)
The insect central complex (CX) is an enigmatic structure whose computational function has evaded inquiry, but has been implicated in a wide range of behaviours. Recent experimental evidence from the fruit fly (Drosophila melanogaster) and the cockroach (Blaberus discoidalis) has demonstrated the existence of neural activity corresponding to the animal's(More)
Working with large swarms of robots has challenges in calibration, sensing, tracking, and control due to the associated scalability and time requirements. Kilobots solve this through their ease of maintenance and programming, and are widely used in several research laboratories worldwide where their low cost enables large-scale swarms studies. However, the(More)
  • 1