Chee C. Wong

Learn More
Experimental results from adaptive learning using an optically controlled neural network are presented. The authors have used example problems in nonlinear system identification and signal prediction, two areas of potential neural network application, to study the capabilities of analog neural hardware. These experiments investigated the effects of a(More)
In the present work, the effect of a surface modification protocol along with the electrode size has been investigated for developing an efficient, label-free electrochemical biosensing method for diagnosis of traumatic brain injury (TBI) biomarkers. A microdisk electrode array (MDEA) and a macroelectrode with a comb structure (MECS) were modified with an(More)
Negative enrichment is the preferred approach for tumor cell isolation as it does not rely on biomarker expression. However, size-based negative enrichment methods suffer from well-known recovery/purity trade-off. Non-size based methods have a number of processing steps that lead to compounded cell loss due to extensive sample processing and handling which(More)
Serum background is a critical issue for biosensor development as it interferes with the detection of target molecules and may give rise to false positive signal. We present here highly sensitive and selective TNF-α biosensor which is able to detect TNF-α from non-diluted human serum using magnetic bead coupled antibody and electrochemical impedance(More)
Herein we demonstrate giant piezoresistance in silicon nanowires (NWs) by the modulation of an electric field-induced with an external electrical bias. Positive bias for a p-type device (negative for an n-type) partially depleted the NWs forming a pinch-off region, which resembled a funnel through which the electrical current squeezed. This region(More)
Although it has been demonstrated that carbon nanotubes (CNTs) may have potentials for tissue engineering applications because of their unparalleled physical properties, little has been known on the cell adhesion mechanisms on model CNT monolayer pertaining to the design of novel cell therapeutics device. In this study, the adhesion dynamics of primary(More)
We realized self-sealing fluidics channels with circular cross-sections having diameters ranging between 30 and 2000 nm on a 200 mm glass wafer through CMOS compatible processes. Lateral voids were narrowed and sealed with non-conformal plasma enhanced chemical vapour deposition (PECVD) of phospho silicate glass (PSG) along silicon oxide trenches on silicon(More)
We present a three-dimensional (3D) micro-traps array for size selective sorting and patterning of microbeads via evaporation-driven capillary flow. The interconnected micro-traps array was manufactured by silicon micromachining. Microliters of aqueous solution containing particle mixtures of different sized (0.2 to 20 μm diameter) beads were dispensed onto(More)
This paper aims to provide a concise review of non-invasive prenatal diagnostics (NIPD) to the lab-on-a-chip and microfluidics community. Having a market of over one billion dollars to explore and a plethora of applications, NIPD requires greater attention from microfluidics researchers. In this review, a complete overview of conventional diagnostic(More)