Learn More
Efforts to extend nanoparticle residence time in vivo have inspired many strategies in particle surface modifications to bypass macrophage uptake and systemic clearance. Here we report a top-down biomimetic approach in particle functionalization by coating biodegradable polymeric nanoparticles with natural erythrocyte membranes, including both membrane(More)
Development of functional nanoparticles can be encumbered by unanticipated material properties and biological events, which can affect nanoparticle effectiveness in complex, physiologically relevant systems. Despite the advances in bottom-up nanoengineering and surface chemistry, reductionist functionalization approaches remain inadequate in replicating the(More)
The use of multiple therapeutic agents in combination has become the primary strategy to treat drug resistant cancers. However, administration of combinatorial regimens is limited by the varying pharmacokinetics of different drugs, which results in inconsistent drug uptake and suboptimal drug combination at the tumor sites. Conventional combination(More)
Cell-derived nanoparticles have been garnering increased attention due to their ability to mimic many of the natural properties displayed by their source cells. This top-down engineering approach can be applied toward the development of novel therapeutic strategies owing to the unique interactions enabled through the retention of complex antigenic(More)
Toxoid vaccines--vaccines based on inactivated bacterial toxins--are routinely used to promote antitoxin immunity for the treatment and prevention of bacterial infections. Following chemical or heat denaturation, inactivated toxins can be administered to mount toxin-specific immune responses. However, retaining faithful antigenic presentation while removing(More)
We report the synthesis of novel acid-responsive therapeutic nanoparticles (NPs) with sub-100 nm size consisting of polymer--cisplatin conjugates. The uniqueness of these drug delivery polymeric NPs lies in the covalent conjugation of each cisplatin drug to the hydrophobic segment of two biocompatible diblock copolymer chains through a hydrazone bond,(More)
Combination chemotherapy and nanoparticle drug delivery are two areas that have shown significant promise in cancer treatment. Combined therapy of two or more drugs promotes synergism among the different drugs against cancer cells and suppresses drug resistance through distinct mechanisms of action. Nanoparticle drug delivery, on the other hand, enhances(More)
Detoxification treatments such as toxin-targeted anti-virulence therapy offer ways to cleanse the body of virulence factors that are caused by bacterial infections, venomous injuries and biological weaponry. Because existing detoxification platforms such as antisera, monoclonal antibodies, small-molecule inhibitors and molecularly imprinted polymers act by(More)
F. Wang, Dr. W. Gao, Dr. S. Thamphiwatana, B. T. Luk, P. Angsantikul, Q. Zhang, Dr. C.-M. J. Hu, Dr. R. H. Fang, J. A. Copp, Prof. L. Zhang Department of NanoEngineering and Moores Cancer Center University of California San Diego, La Jolla , CA 92093 , USA E-mail: zhang@ucsd.edu F. Wang, Prof. W. Lu Department of Pharmaceutics School of Pharmacy Fudan(More)
The unique structural features and stealth properties of a recently developed red blood cell membrane-cloaked nanoparticle (RBC-NP) platform raise curiosity over the interfacial interactions between natural cellular membranes and polymeric nanoparticle substrates. Herein, several interfacial aspects of the RBC-NPs are examined, including completeness of(More)