Chau-Lyan Chang

Learn More
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this(More)
During the past two decades, our understanding of laminar-turbulent transition flow physics has advanced significantly owing to, in a large part, the NASA program support such as the National Aerospace Plane (NASP), High-speed Civil Transport (HSCT), and Advanced Sub-sonic Technology (AST). Experimental, theoretical, as well as computational efforts on(More)
An experimental investigation was conducted on a 5-degree half-angle cone and a 5-degree half-angle flared cone in a conventional Mach 6 wind tunnel to examine the effects of facility noise on boundary layer transition. The influence of tunnel noise was inferred by comparing transition onset locations determined from the present test to that previously(More)
Laminar flow control (LFC) is one of the key enabling technologies for quiet and efficient supersonic aircraft. Recent work at Arizona State University has led to the development of a novel concept for passive LFC on crossflow dominated flow configurations. It employs distributed leading-edge roughness to limit the growth of naturally dominant instabilities(More)
Mesh deformation in response to redefined boundary geometry is a frequently encountered task in shape optimization and analysis of fluid-structure interaction. We propose a simple and concise method for deforming meshes defined with three-node triangular or four-node tetrahedral elements. The mesh deformation method is suitable for large boundary movement.(More)
Laminar flow control (LFC) is one of the key enabling technologies for quiet and efficient supersonic aircraft. Recent work at Arizona State University (ASU) has led to a novel concept for passive LFC, which employs distributed leading edge roughness to limit the growth of naturally dominant crossflow instabilities in a swept-wing boundary layer. Predicated(More)
We present a conservation element solution element method in time and momentum space. Several paradigmatic wave problems including simple wave equation, convection-diffusion equation, driven harmonic oscillating charge and nonlinear Korteweg-de Vries (KdV) equation are solved with this method and calibrated with known solutions to demonstrate its use. With(More)
Transition research under NASA’s Aeronautical Sciences Project seeks to develop a validated set of variable fidelity prediction tools with known strengths and limitations, so as to enable “sufficiently” accurate transition prediction and practical transition control for future vehicle concepts. This paper builds upon prior effort targeting the laminar(More)