Charless C. Fowlkes

Learn More
This paper presents a database containing ‘ground truth’ segmentations produced by humans for images of a wide variety of natural scenes. We define an error measure which quantifies the consistency between segmentations of differing granularities and find that different human segmentations of the same image are highly consistent. Use of this dataset is(More)
This paper investigates two fundamental problems in computer vision: contour detection and image segmentation. We present state-of-the-art algorithms for both of these tasks. Our contour detector combines multiple local cues into a globalization framework based on spectral clustering. Our segmentation algorithm consists of generic machinery for transforming(More)
The goal of this work is to accurately detect and localize boundaries in natural scenes using local image measurements. We formulate features that respond to characteristic changes in brightness, color, and texture associated with natural boundaries. In order to combine the information from these features in an optimal way, we train a classifier using human(More)
Spectral graph theoretic methods have recently shown great promise for the problem of image segmentation. However, due to the computational demands of these approaches, applications to large problems such as spatiotemporal data and high resolution imagery have been slow to appear. The contribution of this paper is a method that substantially reduces the(More)
We analyze the computational problem of multi-object tracking in video sequences. We formulate the problem using a cost function that requires estimating the number of tracks, as well as their birth and death states. We show that the global solution can be obtained with a greedy algorithm that sequentially instantiates tracks using shortest path(More)
We propose a generic grouping algorithm that constructs a hierarchy of regions from the output of any contour detector. Our method consists of two steps, an oriented watershed transform (OWT) to form initial regions from contours, followed by construction of an ultra-metric contour map (UCM) defining a hierarchical segmentation. We provide extensive(More)
Many state-of-the-art approaches for object recognition reduce the problem to a 0-1 classification task. This allows one to leverage sophisticated machine learning techniques for training classifiers from labeled examples. However, these models are typically trained independently for each class using positive and negative examples cropped from images. At(More)
Contours and junctions are important cues for perceptual organization and shape recognition. Detecting junctions locally has proved problematic because the image intensity surface is confusing in the neighborhood of a junction. Edge detectors also do not perform well near junctions. Current leading approaches to junction detection, such as the Harris(More)