Learn More
The realization that coral reef ecosystem management must occur across multiple spatial scales and habitat types has led scientists and resource managers to seek variables that are easily measured over large areas and correlate well with reef resources. Here we investigate the utility of new technology in airborne laser surveying (NASA Experimental Advanced(More)
A study was carried out to determine possible effects of 60-Hz electromagnetic-field exposure on pineal gland function in humans. Overnight excretion of urinary 6-hydroxymelatonin sulfate (6-OHMS), a stable urinary metabolite of the pineal hormone melatonin, was used to assess pineal gland function in 42 volunteers who used standard (conventional) or(More)
We report spatial variability of oceanic phycoerythrin spectral types detected by means of a blue spectral shift in airborne laser-induced fluorescence emission. The blue shift of the phycoerythrobilin fluorescence is known from laboratory studies to be induced by phycourobilin chromophore substitution at phycoerythrobilin chromophore sites in some strains(More)
In this study, methodologies developed for the analysis of synthetic fuel products were applied to the coal tar fractions isolated from coal tar-based pharmaceutical products. A pharmaceutical stock solution of 20% coal tar in alcohol, a 50% coal tar bath emulsion and a 4.3% coal tar shampoo were studied. The toxicology and chemical composition of the coal(More)
Initial results of the airborne LIDAR measurement of photochemical quantum yield, ΦPo, and functional absorption cross-section, σPS II, of Photosystem II (PS II) are reported. NASA's AOL3 LIDAR was modified to implement short-pulse pump-and-probe (SP-P&P) LIDAR measurement protocol. The prototype system is capable of measuring a pump-induced increase in(More)
Two-band radiance-ratio in-water algorithms in the visible spectrum have been evaluated for remote oceanic chlorophyll determination. Airborne active-passive (laser-solar) data from coastal, shelf-slope, and bluewater regions were used to generate 2-D chlorophyll-fluorescence and radiance-ratio statistical correlation matrices containing all possible(More)
The NASA Experimental Advanced Airborne Research Lidar (EAARL), a temporal waveform-resolving, airborne, green wavelength LIDAR (light detection and ranging), is designed to measure the submeter-scale topography of shallow reef substrates. Topographic variability is a prime component of habitat complexity, an ecological factor that both expresses and(More)
The development of a technique for laser measurement of fPhotosystem II (PS II) photochemical characteristics of phytoplankton and terrestrial vegetation from an airborne platform is described. Results of theoretical analysis and experimental study of pump-and-probe measurement of the PS II functional absorption cross-section and photochemical quantum yield(More)
A previously published radiance model inversion theory has been field tested by using airborne water-leaving radiances to retrieve the chromophoric dissolved organic matter (CDOM) and detritus absorption coefficient, the phytoplankton absorption coefficient, and the total backscattering coefficient. The radiance model inversion theory was tested for(More)
The high-resolution Experimental Advanced Airborne Research LIDAR (EAARL) is a new technology for cross-environment surveys of channels and floodplains. EAARL measurements of basic channel geometry, such as wetted cross-sectional area, are within a few percent of those from control field surveys. The largest channel mapping errors are along stream banks.(More)