Learn More
Many modern software systems are designed to be highly configurable, which increases flexibility but can make programs hard to test, analyze, and understand. We present an initial empirical study of how configuration options affect program behavior. We conjecture that, at certain levels of abstraction, configuration spaces are far smaller than the worst(More)
Recently, the web has rapidly emerged as a great source of financial information ranging from news articles to per- sonal opinions. Data mining and analysis of such financial information can aid stock market predictions. Traditional approaches have usually relied on predictions based on past performance of the stocks. In this paper, we introduce a novel way(More)
Software configurability has many benefits, but it also makes programs much harder to test, as in the worst case the program must be tested under every possible configuration. One potential remedy to this problem is combinatorial interaction testing (CIT), in which typically the developer selects a strength t and then computes a covering array containing(More)
Our previous results demonstrated that B cells from a patient (pt1) with non-X-linked hyper-IgM syndrome (HIGM) possess an atypical CD23(lo) phenotype that is unaffected by CD40-mediated activation. To investigate the molecular mechanism underlying defective CD23 expression in pt1 B cells, we used lymphoblastoid cell lines that express LMP1 under the(More)
With the goal of investigating and enhancing anode performance in bulk-heterojunction (BHJ) organic photovoltaic (OPV) cells, the glass/tin-doped indium oxide (ITO) anodes are modified with a series of robust silane-tethered bis(fluoroaryl)amines to form self-assembled interfacial layers (IFLs). The modified ITO anodes are characterized by contact angle(More)
Our previous investigation of a patient (pt1) with non-X-linked hyper-immunoglobulin M syndrome revealed a CD40-mediated defect in B cell activation that resulted in low CD23 expression and absence of germ-line transcription and class-switch recombination. These deficiencies were complemented in vitro by a high threshold of sustained signaling through CD40.(More)
A solution-processed electrochemical charge-trap flash memory element is based on a solid solution of copper and zirconium oxides (Cu-ZrO2) as a charge-trapping layer. Because of the facile reduction of Cu(2+) to Cu(1+), Cu-ZrO2 thin films are especially effective in memory devices based on thin-film transistors when the devices are fabricated from(More)
To achieve densely packed charge-selective organosilane-based interfacial layers (IFLs) on the tin-doped indium oxide (ITO) anodes of organic photovoltaic (OPV) cells, a series of Ar2N-(CH2)n-SiCl3 precursors with Ar = 3,4-difluorophenyl, n = 3, 6, 10, and 18, was synthesized, characterized, and chemisorbed on OPV anodes to serve as IFLs. To minimize(More)
Substitution of a pyridyl for the hydroxyphenyl moiety in the Green Fluorescent Protein analog p-hydroxybenzylidene-dimethylimidiazolinone produces a chromophore which "turns on" fluorescence in the presence of Zn(2+) or Cd(2+) ions. Such a phenomenon provides "proof of principle" for using GFP chromophores in a variety of sensing applications.
The ionization potentials (IPs) and electron affinities (EAs) of widely used conjugated polymers are evaluated by cyclic voltammetry (CV) in conventional electrochemical and lithium-ion battery media, and also by ultraviolet photoelectron spectroscopy (UPS) in vacuo. By comparing the data obtained in the different systems, it is found that the IPs of the(More)