Charles Patrick Collier

Learn More
Logic gates were fabricated from an array of configurable switches, each consisting of a monolayer of redox-active rotaxanes sandwiched between metal electrodes. The switches were read by monitoring current flow at reducing voltages. In the “closed” state, current flow was dominated by resonant tunneling through the electronic states of the molecules. The(More)
An architectural rationale and an experimental program aimed at the development of molecular electronics switching devices for memory and computing applications are discussed. Two-terminal molecular switch tunnel junctions are identified as the critical device components of molecular electronics-based circuitry. They can be tiled in two dimensions and are(More)
Ordered arrays, or superlattices, of metallic, insulating, or semiconducting quantum dots, represent an exciting new class of materials. These superlattices are often referred to as artificial solids, in which the nanocrystals take the place of atoms in traditional solids, and the packing arrangement of the nanocrystals determines the unit cell parameters(More)
Cell-free systems offer a simplified and flexible context that enables important biological reactions while removing complicating factors such as fitness, division, and mutation that are associated with living cells. However, cell-free expression in unconfined spaces is missing important elements of expression in living cells. In particular, the small(More)
Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic(More)
A better understanding of how confinement, crowding and reduced dimensionality modulate reactivity and reaction dynamics will aid in the rational and systematic discovery of functionality in complex biological systems. Artificial microfabricated and nanofabricated structures have helped elucidate the effects of nanoscale spatial confinement and segregation(More)
We demonstrate reversible wetting and filling of open single-wall carbon nanotubes with mercury by means of electrocapillary pressure originating from the application of a potential across an individual nanotube in contact with a mercury drop. Wetting improves the conductance in both metallic and semiconducting nanotube probes by decreasing contact(More)
We report the first extension of cavity ringdown laser absorption spectroscopy (CRLAS) into the infrared region. Spectra of static gas samples have been obtained employing a single mode Nd:YAG pumped optical parametric oscillator laser system and are reported for two spectral regions centered around 1.6 and 3.3 Ixm, respectively. We also explore the issue(More)
The effects of increased crowding and confinement on the mobility of individual fluorescent molecules were studied using Fluorescence Correlation Spectroscopy (FCS) in a microfluidic device with sealable femtolitre-volume chambers, and compared to three dimensional stochastic Monte Carlo simulations. When crowding and the degree of confinement were(More)
The droplet interface bilayer (DIB) is a modular technique for assembling planar lipid membranes between water droplets in oil. The DIB method thus provides a unique capability for developing digital, droplet-based membrane platforms for rapid membrane characterization, drug screening and ion channel recordings. This paper demonstrates a new, low-volume(More)